研究生: |
劉玉山 |
---|---|
論文名稱: |
阿拉伯芥葉綠體轉運蛋白At TOC159家族之基因功能研究 Functional studies of Arabidopsis TOC159 translocon gene family |
指導教授: | 孫智雯 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 37 |
中文關鍵詞: | 阿拉伯芥 、At TOC159基因表現 、領導內插子 、GUS報導基因 、保衛細胞 |
英文關鍵詞: | Arabidopsis, At TOC159 gene expression, leader intron, GUS reporter gene, guard cells |
論文種類: | 學術論文 |
相關次數: | 點閱:223 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數千種由細胞核基因所解碼合成的蛋白質必須被準確地送入色質體中,才能促進色質體正常的生合成。而位於葉綠體外膜及內膜上的轉運蛋白複合體(Toc及Tic)則負責辨識及運輸這些色質體前軀蛋白質。在前人的豌豆研究中,Toc159蛋白質被鑑定是色質體前軀蛋白主要的辨識受體。阿拉伯芥中含有四種豌豆psToc159的同源蛋白,分別稱為atToc159、atToc132、atToc120和atToc90。這些At TOC159家族成員的基因必須被適當的調節,因為這些運輸蛋白機組必須準確的組裝以執行適當的辨識及運輸功能。為了解At TOC159家族成員的基因調節機制,這些基因的上游調節序列接上GUS報導基因後轉殖進入野生型阿拉伯芥植株。根據GUS活性分析的結果,顯示這些基因的表現模式不同。一般而言,At TOC159、At TOC132/90和At TOC120基因在不同的發育階段與不同組織中分別有高量、中度和低量的表現。在根的組織中,At TOC159及At TOC132有較高表現量,但At TOC120及At TOC90只維持基本表現量。此外,四個家族成員基因在花及果實發育的過程中都維持一定的高表現量,At TOC159在果實發育後期表現量的提高尤其顯著。此外,光處理及領導內插子的存在與否,會影響At TOC159家族成員的組織專一性表現。光訊號會促進At TOC159及At TOC90在綠色組織中的表現量,且明顯促進At TOC120在下胚軸和根組織中的表現量。領導內插子會增加At TOC120在根/葉/花/果莢組織中的表現量,但是增加At TOC90在葉/花葯組織中的表現量。除了進行不同組織的基因表現之比較分析外,我們也進行了這些轉殖株中基因的細胞專一性表現的研究。令人驚訝的,在與At TOC159和At TOC132的比較下,At TOC90和At TOC120在子葉保衛細胞中基因的表現量明顯地要比葉肉細胞多,這表示atToc90和atToc120在保衛細胞運輸蛋白質進入葉綠體上可能扮演一定的角色。這些結果顯示阿拉伯芥四種TOC159基因成員在色質體發育過程中,因為在不同組織中的色質體內所需要蛋白種類不同,所以他們必須受到不同的機制調節而顯現出基因表現上的差異,進而辨識及運輸特定前軀蛋白以維持色質體功能及發育。
Accurate import of thousands of nuclear-encoded proteins is an important step in plastid biogenesis. The import machinery of cytosolic precursor proteins to plastids relies on the Toc and Tic (translocons on the outer envelope and inner envelope membrane of chloroplasts) complexes. Toc159 protein was identified in pea (Pisum sativum) as a major receptor for the precursor proteins. In Arabidopsis thaliana, four psToc159 homologs are identified, termed atToc159, atToc132, atToc120 and atToc90. The expression of At TOC159, At TOC132, At TOC120 and At TOC90 genes have to be properly regulated, because their gene products must be correctly integrated to appropriate apparatus to perform their functions. In order to elucidate the regulatory mechanisms of At TOC159 homologous gene expression, transgenes containing various lengths of the upstream regulatory sequences of At TOC159/ At TOC132/ At TOC120/ At TOC90 and GUS coding sequence were transferred to wild type Arabidopsis. On the basis of the analysis of GUS activity in these transgenic plants, At TOC159/ At TOC132/ At TOC120/ At TOC90 had distinct expression patterns. In general, At TOC159, At TOC132/ At TOC90, and At TOC120 have relatively high, moderate, and low expression levels in various tissues of different developmental stages. In mature roots, At TOC159 and At TOC132 are expressed at higher levels, but At TOC120 and At TOC90 are expressed at the basal level. All four genes have increased expression level during flower and fruit development, particularly a remarkably high expression level of At TOC159 in later stage of fruit development. Furthermore, light treatment and leader intron in the 5' UTR induce the expression level of At TOC159 members in a tissue-specific manner. Light signal increases the At TOC159 and At TOC90 expression in green tissues, and At TOC120 expression in hypocotyls and roots. The endogenous leader intron sequence is able to up-regulate the At TOC120 expression in roots/leaves/flowers/siliques, and the At TOC90 expression in leaves/anthers. In addition to tissue-specific expression, the cell-specific expression of these transgenic plants was also determined. Surprisedly, At TOC90 and At TOC120 had higher GUS activity in the guard cells than mesophyll cells of cotyledon when compared to At TOC159 and At TOC132. This indicates that atToc90 and atToc120 might play a more important role in regulating chloroplast protein import of guard cells. These results suggest that differential expression of At TOC159 gene members is essential during plastid development, because proper atToc159 isoforms are required to import distinct proteins to the plastids of different tissues.
Agne B., Andrès C., Montandon C., Christ B., Ertan A. and Jung F. (2010). The acidic A-domain of Arabidopsis TOC159 occurs as a hyperphosphorylated protein. Plant Physiol., 153: 1016-30.
Asano T., Yoshioka Y. and Machida Y. (2004). A defect in atToc159 of Arabidopsis thaliana causes severe defects in leaf development. Genes Genet. Syst., 79: 207-12.
Bailey TL. and Elkan C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol., 2: 28-36.
Bauer J., Chen K., Hiltbunner A., Wehrli E., Eugster M., Schnell D. and Kessler F. (2000). The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature, 403: 203-207.
Bischof S., Baerenfaller K., Wildhaber T., Troesch R., Vidi PA., Roschitzki B., Hirsch-Hoffmann M., Hennig L., Kessler F., Gruissem W. and Baginsky S. (2011). Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of N-acetylated plastid precursor proteins. Plant Cell, 23: 3911-28.
Boyes DC., Adel MZ., Robert A., Amy J., McCaskill., Neil EH., Keith RD. and Jörn Görlach. (2001). Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. Plant Cell, 13: 1499-1510.
Chen YJ. and Sun CW. (2010).Transgenic study of chloroplast translocon gene regulation in Arabidopsis thaliana. Bot. Stud., 51: 147-153.
Clough S. and Bent A. (1998). Floral dip: a simplified, method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 16: 735-743.
Chomczynski P. and Sacchi N. (1987). Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem., 162: 156-159.
Constan D., Patel R., Keegstra K and Jarvis P. (2004). An outer envelope membrane component of the plastid protein import apparatus plays an essential role in Arabidopsis. Plant J., 38: 93-106.
Fan WH. and Dong XN. (2002). In vivo interaction between NPR1 and transcription factor
TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell, 14: 1377-1389.
Fan SC., Lin CS., Hsu PK., Lin SH. and Tsay YF. (2009). The Arabidopsis nitrate transporter NRT1.7, Expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell, 21: 2750-2761.
Gallie DR. and Young TE. (1994). The regulation of gene expression in transformed Maize aleurone and endosperm protoplasts' Analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expression. Plant Physiol., 106: 929-939.
Gavin E., Crooks., Gary H. and John-Marc C.(2004). WebLogo: A Sequence Logo Generator. Genome Res., 14: 1188-1190.
Higo K., Ugawa Y., Iwamoto M. and Korenaga T. (1999). Plant cis-acting regulatory DNA elements PLACE database. Nucleic Acids Res., 27: 297-300.
Hiltbrunner A., Grunig K., Alvarez-Huerta M., Infanger S., Bauer J. and Kessler F. (2004). AtToc90, a new GTP-binding component of the Arabidopsis chloroplast protein import machinery. Plant Mol. Biol., 54: 427- 440.
Inaba T. and Schnell D. (2008). Protein trafficking to plastids: one theme, many variations. Biochem. J., 413: 15-28.
Infanger S., Bischof S., Hiltbrunner A., Agne B., Baginsky S. and Kessler F. (2011).The
chloroplast import receptor Toc90 partially restores the accumulation of Toc159 client proteins in the Arabidopsis thaliana ppi2 mutant. Mol. Plant, 4: 252-263.
Inoue H., Rounds C. and Schnell D. (2010). The molecular basis for distinct pathways for protein import into Arabidopsis chloroplasts. Plant Cell, 22: 1947-1960.
Ivanova Y., Smith MD., Chen K. and Schnell D. (2004). Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids. Mol. Biol. Cell, 15: 3379-92.
Jarvis P., Chen LJ., Li Hm., Peto CA., Fankhauser C. and Chory J. (1998). An Arabidopsis mutant defective in the plastid general protein import apparatus. Science, 282: 100-103.
Jarvis P. (2008). Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol., 179: 257-85.
Jefferson RA. (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep., 5: 387-405.
Jeong YM., Mun JH., Lee I., Woo JC., Hong CB. and Kim SG. (2006). Distinct roles of the first introns on the expression of Arabidopsis profile in gene family members. Plant Physiol., 140: 196-209.
Jonsson JJ., Foresman MD., Wilson N. and Mclvor. (1990). Intron requirement for expression of the human purine nucleoside phosphorylase gene. Nucleic Acids Res., 20: 3191-3198.
Keegstra K. and Cline K. (1999). Plant import and routing systems of chloroplasts. Plant Cell, 11: 557-570.
Kolluri R., Torrey TA. and Kinniburgh AJ. (1992). A CT promoter element binding protein: definition of a double-strand and a novel single-strand DNA binding motif. Nucleic Acids Res., 20: 111-6.
Kubis S., Baldwin A., Patel R., Razzaq A., Dupree P., Lilley K., Kurth J., Leister D. and Jarvis P. (2003). The Arabidopsis ppi1mutant is specifically defective in the expression, chloroplast import,and accumulation of photosynthetic proteins. Plant Cell, 15: 1859-1871.
Kubis S., Patel R., Combe J., Bédard J., Kovacheva S., Lilley K., Biehl A., Leister D., Ríos G., Koncz C. and Jarvis P. (2004). Functional Specialization amongst the Arabidopsis Toc159 Family of Chloroplast Protein Import Receptors. Plant Cell, 16: 2059-2077.
Lamesch P., Berardini TZ., Li D., Swarbreck D., Wilks C., Sasidharan R., Muller R., Dreher K., Alexander DL., Garcia-Hernandez M., Karthikeyan AS., Lee CH., Nelson WD., Ploetz L., Singh S., Wensel A. and Huala E. (2012). The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res., 40: 1202-1210.
Li HM. and Chiu CC. (2010). Protein transport into chloroplasts. Annu. Rev. Plant Biol.,
61:157-180.
Luehrsen KR. and Walbot V. (1991). Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol. Gen. Genet., 225: 83-93.
Martin W., Rujan T., Richly E., Hansen A., Cornelsen S., Lins T., Leister D., Stoebe B., Hasegawa M. and Penny D. (2002). Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl. Acad. Sci., 99: 12246-12251.
Mascarenhas D., Mettler IJ., Pierce DA. and Lowe HW. (1990). Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol. Biol., 15: 913-20.
Morello L., Bardini M., Sala F. and Breviario D. (2002). A long leader intron of the Ostub16 rice -tubulin gene is required for high-level gene expression and can autonomously promote transcription both in vivo and in vitro. Plant J., 29: 33-44.
Murashige T. and Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant, 15: 473-497.
Norris SR., Meyer SE. and Callis J. (1993). The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol. Biol., 21: 895-906.
Palmiter RD., Sandgren EP., Avarbock MR., Allen DD. and Brinster RL. (1991). Heterologous introns can enhance expression of transgenes in mice. Proc. Natl. Acad. Sci., 88: 478-482.
Rethmeier N., Kramer E., Va M., Montagu N. and Cornelissen M. (1998). Identification of cat sequences required for intron-dependent gene expression in maize cells. Plant J., 13: 831-835.
Rochaix JD. (2004). Genetics of the biogenesis and dynamics of the photosynthetic machinery in eukaryotes. Plant Cell, 16: 1650-60.
Rose AB., Elfersi T., Parra G. and Korf I. (2008). Promoter proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. Plant Cell, 19: 1898-1911.
Sangwan I. and O'Brian MR. (2002). Identification of a Soybean protein that interacts with GAGA element dinucleotide repeat DNA. Plant Physiol., 129: 1788-1794.
Santi L., Wang Y., Stile MR., Berendzen K., Wanke D., Roig C., Pozzi C.,Muller K., Muller J., Rohde W. and Salamini F. (2003). The GA octodinucleotide repeat binding factor BBR participates inthe transcriptional regulation of the homeobox gene Bkn3. Plant J., 34:813-826.
Smith M., Rounds C., Wang F., Chen K., Afitlhile M. and Schnell D. (2004). The atToc159 is a selective transit peptide receptor for the import of nucleus-encoded chloroplast proteins. J. Cell Biol., 165: 323-334.
Stanga JP., Boonsirichai K., Sedbrook JC., Otegui MS. and Masson PH. (2009). A role for the TOC complex in Arabidopsis root gravitropism. Plant Physiol., 149: 1896-1905.
Sveshnikova N., Soll J. and Schleiff E. (2000). Toc34 is a preprotein receptor regulated by GTP and phosphorylation. Proc. Natl. Acad. Sci., 97: 4973-4978.
Thimm O., Blasing O., Gibon Y., Nagel A., Meyer S., Kruger P., Selbig J., Muller LA., Rhee SY. and Stitt M. (2004). MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J., 37: 914-39.
Yu TS. and Li HM. (2001). Chloroplast protein translocon components atToc159 and atToc33 are not essential for chloroplast biogenesis in guard cells and root cells. Plant Physiol., 127: 90-96.
Zimmermann P., Hirsch-Hoffmann M., Hennig L. and Gruissem W. (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol., 136: 2621-2632.