簡易檢索 / 詳目顯示

研究生: 廖倩儀
Liao, Chien-Yi
論文名稱: Relationship between 2.37 Ga Boninitic Dyke Swarms of Indian Shield: Evidence from the Central Bastar Craton and NE Dharwar Craton
Relationship between 2.37 Ga Boninitic Dyke Swarms of Indian Shield: Evidence from the Central Bastar Craton and NE Dharwar Craton
指導教授: 謝奈特
John Gregory Shellnutt
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 109
中文關鍵詞: Indian ShieldBoninitic Dyke SwarmGeochronologyCrustal ContaminationPaleoproterozoic
英文關鍵詞: Indian Shield, Boninitic Dyke Swarm, Geochronology, Crustal Contamination, Paleoproterozoic
DOI URL: http://doi.org/10.6345/THE.NTNU.DES.011.2018.B07
論文種類: 學術論文
相關次數: 點閱:113下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無中文摘要

    The Indian Shield is cross-cut by a number of distinct Paleoproterozoic mafic dyke swarms. The density of mafic dyke swarms in the Dharwar and Bastar Cratons is amongst the highest on Earth. Globally, Proterozoic boninitic (high SiO2 and MgO, low TiO2) dyke swarms are rare compared to tholeiitic dyke swarms and yet they are common within the Southern Indian Shield. In this study, the geochronology and geochemical results were used to constrain the petrogenesis and relationship of the boninitic dyke in the central Bastar Craton and the NW Dharwar Craton. A single U-Pb baddeleyite age from a boninitic dyke near Bhanupratappur of the Central Bastar Craton yielded a weighted-mean 207Pb/206Pb age of 2365.6 ± 0.9 Ma and is within error of boninitic dykes (2368.5 ± 2.6 Ma; U-Pb, baddeleyite) near Karimnagar and further south near Bangalore (2365.4 ± 1.0 Ma to 2368.6 ± 1.3 Ma; U-Pb, baddeleyite) of the Dharwar Craton. Dykes in both Karimnagar and Bhanupratappur region have boninitic characteristic (SiO2 = 52.9 to 56.1 wt%, MgO = 5.9 to 19.0 wt%, and TiO2 = 0.31 wt% to 0.78 wt%). The Nd isotopes (εNd(t) = –6.4 to +4.5) of the Bhanupratappur dykes are more variable than Karimnagar dykes (εNd(t) = –0.7 to +0.6) but overlap. The variability Nd isotopes may be related to crustal contamination either during fractional crystallization or during emplacement. Rhyolite-MELTS modeling using the least contaminated sample (B/29) indicates that fractional crystallization may partly influence the geochemical variability of the boninitic dykes in these areas. The trace element modeling shows the primary melt may be derived from a pyroxenite mantle source near the spinel-garnet transition zone. The chemical and temporal similarities of the Bhanupratappur dykes with the dykes of the Dharwar Craton (Karimnagar, Dharwar) indicate they are all members of the same giant radiating dyke swarm. It is possible that the dyke swarm was related to a mantle plume which assisted in break-up of an unknown supercontinent. Furthermore, the results indicate that the Bastar and Dharwar Cratons were adjacent but likely had a different configuration before 2.37 Ga.

    Abstract I Acknowledgement III Table of Contents IV List of Figures VI List of Pictures VII List of Tables VIII Chapter 1 Introduction 1 1.1 Crustal evolution 1 1.2 Mafic dyke swarms of the Southern Indian Shield 6 1.3 Purpose of this study 9 1.4 Geological background 9 1.4.1 Indian Shield 9 1.4.2 Bastar Craton 11 1.4.3 Dharwar Craton 14 1.5 Sample location 18 1.5.1 Bhanupratappur area 18 1.5.2 Karimnagar area 18 Chapter 2 Petrography 21 2.1 Dykes from the Bhanupratappur area 21 2.2 Karimnagar Dykes 22 Chapter 3 Research Methods 29 3.1 Baddeleyite U-Pb Dating 29 3.2 Whole Rock Geochemistry 32 3.2.1 Major Elements 32 3.2.2 Trace Elements 36 3.2.3 Sr, Nd Isotopes 40 Chapter 4 Results 47 4.1 Geochronology 47 4.2 Bhanupratappur area, Bastar Craton 50 4.2.1 Major Element 50 4.2.2 Trace Element 52 4.2.3 Sr-Nd Isotopes 56 4.3 Karimnagar area, Dharwar Craton 58 4.3.1 Major element 58 4.3.2 Trace element 59 4.3.3 Sr-Nd Isotopes 62 Chapter 5 Discussion 65 5.1 Geochemical correlation of the Bhanupratappur boninitic dykes 65 5.1.1 Boninitic dyke swarms across the Bastar Craton 65 5.1.2 Paleoproterozoic (2.3 Ga) mafic dyke swarm across the Dharwar Craton 69 5.2 Petrogenesis of the 2.3 Ga boninitic dykes 74 5.2.1 Fractional crystallization 74 5.2.2 Crustal contamination 79 5.2.3 Heterogeneous mantle source 84 5.3 Emplacement model of the 2.3 Ga boninitic dykes 87 5.4 Position of Bastar Craton in Paleoproterozoic 89 5.4.1 The Bastar – Dharwar Craton connection 89 5.4.2 Position of Indian Shield and Supercontinents 93 Chapter 6 Conclusion 95 References 96 Appendixes 104 Appendix 1: Results of Rhyolite MELTS modeling of the boninitic dykes. 104 Appendix 2: Mixing modeling results of Sr isotope and SiO2. 107

    Anand, M., Gibson, S.A., Subbarao, K.V., Kelley, S.P., Dickin, A.P., 2003. Early Proterozoic melt generation processes beneath the intra-cratonic Cuddapah Basin, southern India. Journal of Petrology, 44(12), 2139-2171.
    Annen, C., Sparks, R.S.J., 2002. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth and Planetary Science Letters 203(3-4), 937-955.
    Aspler, L.B., Chiarenzelli, J.R., 1998. Two Neoarchean supercontinents? Evidence from the Paleoproterozoic. Sedimentary Geology 120(1-4), 75-104.
    Babu, N.R., Venkateshwarlu, M., Shankar, R., Nagaraju, E., Parashuramulu, V., 2018. New paleomagnetic results on ∼2367 Ma Dharwar giant dyke swarm, Dharwar craton, southern India: implications for Paleoproterozoic continental reconstruction. Journal of Earth System Science 127(1), 3. https://doi.org/10.1007/s12040-017-0910-3
    Belica, M.E., Piispa, E.J., Meert, J.G., Pesonen, L.J., Plado, J., Pandit, M.K., Kamenov, G.D., Celestino, M., 2014. Paleoproterozoic mafic dyke swarms from the Dharwar craton; paleomagnetic poles for India from 2.37 to 1.88Ga and rethinking the Columbia supercontinent. Precambrian Research 244, 100-122.
    Bleeker, W., 2003. The late Archean record: a puzzle in ca. 35 pieces. Lithos, 71(2-4), 99-134.
    Bleeker, W., Ernst, R.E., 2006. Short-lived mantle generated magmatic events and their dyke swarms: the key to unlocking Earth’s paleogeographic record back to 2.6 Ga. In: Hanski, E., Meranen, S., Rämo, T., Vuollo, J. (Eds.), Dyke Swarms – Time Markers of Crustal Evolution. Taylor and Francis/Balkema, London, 3–26.
    Bradley, D.C., 2011. Secular trends in the geologic record and the supercontinent cycle. Earth-Science Reviews 108(1-2), 16-33.
    Bryan, S.E., Ernst, R.E., 2008. Revised definition of large igneous provinces (LIPs). Earth-Science Reviews 86(1-4), 175-202.
    Cawood, P.A., Hawkesworth, C., Dhuime, B., 2013. The continental record and the generation of continental crust. Geological Society of America Bulletin 125(1-2), 14-32.
    Cawood, P.A., Kroner, A., Pisarevsky, S., 2006. Precambrian plate tectonics: criteria and evidence. Geological Society of America Today 16(7), 4.
    Chadwick, B., Vasudev, V., Hegde, G., 2000. The Dharwar craton, southern India, interpreted as the result of Late Archaean oblique convergence. Precambrian Research 99(1-2), 91-111.
    Chatterjee, N., Bhattacharji, S., 2001. Petrology, geochemistry and tectonic settings of the mafic dikes and sills associated with the evolution of the Proterozoic Cuddapah Basin of south India. Journal of Earth System Science 110(4), 433-453.
    Coffin, M., Eldholm, O., 1991. Large igneous provinces: JOI/USSAC workshop report. Austin TX, USA, University of Texas at Austin Institute for Geophysics, 79.
    Cogley, J.G., 1984. Continental margins and the extent and number of the continents. Reviews of Geophysics 22(2), 101-122.
    Crawford, A.J., Falloon, T.J., Green, D.H., 1989. Classification, petrogenesis and tectonic setting of boninites. In: Crawford, A.J. (Eds.), Boninites and Related Rocks. Unwin, London, 1-49.
    Davidson, J., Turner, S., Plank, T., 2013. Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes. Journal of Petrology 54(3), 525-537.
    Davis, W., Bleeker, W., Hulbert, L., Jackson, V., 2004. New geochronological results from the Slave Province Minerals and Geoscience Compilation and Synthesis Project. Geological Science of Canada Northern Resources Program: Yellowknife Geoscience Forum (Abstracts of Talks and Posters), 20.
    Delano, J.W., 2001. Redox history of the Earth's interior since∼ 3900 Ma: implications for prebiotic molecules. Origins of Life and Evolution of the Biosphere 31(4-5), 311-341.
    Demirer, K., 2012. U-Pb baddeleyite ages from mafic dyke swarms in Dharwar craton, India: links to an ancient supercontinent. Dissertations in Geology at Lund University.
    Divakara Rao, V., Narayana, B.L., Rama Rao, P., Murthy, N.N., Subba Rao, M.V., Mallikharjuna Rao, J., Reddy, G. L. N., 2000. Precambrian acid volcanism in central India – geochemistry and origin. Gondwana Research 3(2), 215-226.
    Ernst, R., Bleeker, W., 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Canadian Journal of Earth Sciences 47, 695-739.
    Ernst, R., Head, J., Parfitt, E., Grosfils, E., Wilson, L., 1995. Giant radiating dyke swarms on Earth and Venus. Earth-Science Reviews 39, 1-58.
    Ernst, R.E., Buchan, K.L., 1997. Giant radiating dyke swarms: their use in identifying pre‐Mesozoic large igneous provinces and mantle plumes. In: Mahoney, J.J., Coffin, M. (Eds.), Large Igneous Provinces: Continental, Oceanic, and Planetary Volcanism. Geophysical Monograph Series. American Geophysical Union, 100, 297-333.
    Ernst, R.E., Srivastava, R.K., 2008. India’s place in the Proterozoic world: constraints from the Large Igneous Province (LIP) record. Indian dykes. In: Srivastava, R.K., Sivaji, Ch., Chalapathi Rao, NV. (Eds.), Indian Dykes: Geochemistry, Geophysics, and Geochronology. Narosa Publishing House, New Delhi, India, 41-56.
    French, J.E., Heaman, L.M., 2010. Precise U–Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton, India: Implications for the existence of the Neoarchean supercraton Sclavia. Precambrian Research 183, 416-441.
    French, J.E., Heaman, L.M., Chacko, T., Srivastava, R.K., 2008. 1891–1883Ma Southern Bastar–Cuddapah mafic igneous events, India: a newly recognized large igneous province. Precambrian Research 160, 308-322.
    French, J.E., Heaman, L.M., Chacko, T., Rivard, B., 2004. Global mafic magmatism and continental breakup at 2.2 Ga: evidence from the Dharwar craton, India. In: Geology Society of America Annual Meeting in Denver, Abstracts with Programs, 36(5), 340.
    Friend, C.R.L., Nutman, A.P., 1991. SHRIMP U-Pb geochronology of the Closepet granite and Peninsular gneiss, Karnataka, South India. Journal of the Geological Society of India, 38(4), 357-368.
    Gao, S., Liu, X., Yuan, H., Hattendorf, B., Günther, D., Chen, L., Hu, S., 2002. Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards Newsletter, 26(2), 181-196.
    Ghiorso, M.S., Sack, R.O., 1995. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology 119, 197-212.
    Ghosh, J.G., 2004. 3.56 Ga tonalite in the central part of the Bastar Craton, India: oldest Indian date. Journal of Asian Earth Sciences 23, 359-364.
    Glazner, A.F., 2007. Thermal limitations on incorporation of wall rock into magma. Geology 35, 319-322.
    Gualda, G.A., Ghiorso, M.S., Lemons, R.V., Carley, T.L., 2012. Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology 53, 875-890.
    Hagstrum, J.T., 2005. Antipodal hotspots and bipolar catastrophes: Were oceanic large-body impacts the cause? Earth and Planetary Science Letters 236, 13-27.
    Hall, R., Hughes, D., 1993. Early Precambrian crustal development: changing styles of mafic magmatism. Journal of the Geological Society 150, 625-635.
    Halls, H., 1982. The importance and potential of mafic dyke swarms in studies of geodynamic processes. Geoscience Canada 9, 145-154.
    Halls, H.C., Kumar, A., Srinivasan, R., Hamilton, M.A., 2007. Paleomagnetism and U–Pb geochronology of easterly trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37Ga. Precambrian Research 155, 47-68.
    Hauri, E., 2002. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chemical Geology 183, 115-141.
    Hickey, R.L., Frey, F.A., 1982. Geochemical characteristics of boninite series volcanics: implications for their source. Geochimica et Cosmochimica Acta 46, 2099-2115.
    Hoffman, P.F., 1999. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. Journal of African Earth Sciences 28, 17-33.
    Hou, G., 2012. Mechanism for three types of mafic dyke swarms. Geoscience Frontiers 3, 217-223.
    Hou, G., Santosh, M., Qian, X., Lister, G.S., Li, J., 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms. Gondwana Research 14, 395-409.
    Huppert, H.E., Sparks, R.S.J., 1988. The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology 29, 599-624.
    Irvine, T.N., Baragar, W.R.A., 1971. A guide to chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523– 548.
    Kumar, A., Hamilton, M.A., Halls, H.C., 2012. A Paleoproterozoic giant radiating dyke swarm in the Dharwar Craton, southern India. Geochemistry, Geophysics, Geosystems 13(2). Q02011. http://dx.doi.org/10.1029/2011GC003926.
    Le Bas, M. J., 2000. IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology, 41(10), 1467-1470.
    Le Maitre, R.W., 2002. Igneous Rocks: A Classification and Glossary of Terms. In: Le Maitre, R.W. (Eds.), Recommendations of the IUGS Subcomission on the Systematics of Igneous Rocks, 2nd ed., Cambridge University Press, Cambridge, 236.
    Ludwig, K.R., 2011. Isoplot v. 4.15: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4, 75.
    Mahoney, J.J., Coffin, M.F., 1997. Preface. In: Mahoney, J.J., Coffin, M. (Eds.), Large Igneous Provinces: Continental, Oceanic, and Planetary Volcanism. Geophysical Monograph Series. American Geophysical Union, 100, ix.
    Meert, J.G., Pandit, M.K., 2015. The Archaean and Proterozoic history of Peninsular India: tectonic framework for Precambrian sedimentary basins in India. In: Mazumder, R., Eriksson, P. G. (Eds.), Precambrian Basins of India: Stratigraphic and Tectonic Context. Geological Society of London, Memoirs, 43, 29–54.
    Mohanty, S., 2012. Spatio-temporal evolution of the Satpura Mountain Belt of India: A comparison with the Capricorn Orogen of Western Australia and implication for evolution of the supercontinent Columbia. Geoscience Frontiers 3, 241-267.
    Murthy, N., 1987. Mafic dyke swarms of the Indian Shield. In: Halls, H.C., Fahrig, W.F., (Eds.), Mafic Dyke Swarms, Geological Association of Canada Special Paper 34, 393-400.
    Naqvi, S.M., Rogers, J.J.W., 1987. Precambrian geology of India. Oxford University Press, New York, 223.
    Osborn, E.F., 1959. Role of oxygen pressure in the crystallization and differentiation of basaltic magma. American Journal of Science, 257(9), 609-647.
    Pandey, B., Gupta, J., Sarma, K., Sastry, C., 1997. Sm-Nd, Pb-Pb and Rb-Sr geochronology and petrogenesis of the mafic dyke swarm of Mahbubnagar, South India: implications for Paleoproterozoic crustal evolution of the Eastern Dharwar Craton. Precambrian Research 84, 181-196.
    Pesonen, L.J., Elming, S.Å., Mertanen, S., Pisarevsky, S., D'Agrella-Filho, M.S., Meert, J.G., Schmidt, P.W., Abrahamsen, N., Bylund, G., 2003. Palaeomagnetic configuration of continents during the Proterozoic. Tectonophysics 375, 289-324.
    Ramachandra, H., Mishra, V., Deshmukh, S., 1995. Mafic dykes in the Bastar Precambrian: study of the Bhanupratappur-Keskal mafic dyke swarm. In: Devaraju, T.C. (Eds.), Dyke Swarm of Peninsular India. Geological Society of India, Memoirs, 33, 183–207.
    Ramakrishnan, M., 1990. Crustal development in southern Bastar, Central India craton. Geological Survey of India Special Publication, 28, 44-66.
    Ramakrishnan, M., Vaidyanadhan, R., 2008. Geology of India. Geological Society of India 1, 994.
    Rasmussen, B., Bose, P. K., Sarkar, S., Banerjee, S., Fletcher, I. R., McNaughton, N. J., 2002. 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, lower Vindhyan, India: Possible implications for early evolution of animals. Geology 30(2), 103-106.
    Rogers, J.J.W., 1996. A history of continents in the past three billion years. The Journal of Geology 104, 91-107.
    Rogers, J.J.W., Santosh, M., 2003. Supercontinents in Earth History. Gondwana Research 6, 357-368.
    Rogers, J.J.W., Santosh, M., 2004. Continents and supercontinents. Oxford University Press, New York, 289.
    Roy, A., Sarkar, A., Jeyakumar, S., Aggrawal, S. K., Ebihara, M., 2002. Mid-Proterozoic plume-related thermal event in eastern Indian craton: evidence from trace elements, REE geochemistry and Sr-Nd isotope systematics of basic-ultrabasic intrusives from Dalma volcanic belt. Gondwana Research, 5(1), 133-146.
    Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. Treatise on geochemistry 3, 659.
    Söderlund, U., Johansson, L., 2002. A simple way to extract baddeleyite (ZrO2). Geochemistry, Geophysics, Geosystems 3. http://dx.doi.org/10.1029/2001GC000212.
    Saha, D., Mazumder, R., 2012. An overview of the Palaeoproterozoic geology of Peninsular India, and key stratigraphic and tectonic issues. Geological Society Special Publications, London, 365, 5-29.
    Salminen, J., Pesonen, L.J., Mertanen, S., Vuollo, J., Airo, M.L., 2009. Palaeomagnetism of the Salla Diabase Dyke, northeastern Finland, and its implication for the Baltica-Laurentia entity during the Mesoproterozoic. Geological Society Special Publications, London, 323, 199-217.
    Sankaran, A.V., 2003. The supercontinent medley: Recent views. Current Science 85(8), 1121-1124.
    Santosh, M., Maruyama, S., Yamamoto, S., 2009. The making and breaking of supercontinents: Some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Research 15, 324-341.
    Sarkar, G., Corfu, F., Paul, D., McNaughton, N., Gupta, S., Bishui, P., 1993. Early Archean crust in Bastar Craton, Central India—a geochemical and isotopic study. Precambrian Research 62, 127-137.
    Shellnutt, J.G., Hari, K.R., Liao, A.C.-Y., Denyszyn, S.W., Vishwakarma, N., 2018. A 1.88 Ga giant radiating mafic dyke swarm across southern India and Western Australia. Precambrian Research 308, 58-74.
    Sheth, H.C., Torres-Alvarado, I.S., Verma, S.P., 2002. What is the" calc-alkaline rock series"?. International Geology Review 44(8), 686-701.
    Singh, A.P., Mishra, D.C., Gupta, S.B., Rao, M.P., 2004. Crustal structure and domain tectonics of the Dharwar Craton (India): insight from new gravity data. Journal of Asian Earth Sciences 23(1), 141-152.
    Smithies, R., 2002. Archaean boninite-like rocks in an intracratonic setting. Earth and Planetary Science Letters 197, 19-34.
    Smithies, R.H., Champion, D.C., Sun, S.-S., 2004. The case for Archaean boninites. Contributions to Mineralogy and Petrology 147, 705-721.
    Srivastava, R.K., 1999. Petrology and geochemistry of the Late Archaean siliceous high-magnesian basalts (SHMB) from Kaklur, southern Bastar craton, Central India. Journal of the Geological Society of India 53, 693-704.
    Srivastava, R.K., 2006. Geochemistry and petrogenesis of Neoarchaean high-Mg low-Ti mafic igneous rocks in an intracratonic setting, Central India craton: Evidence for boninite magmatism. Geochemical Journal 40, 15-31.
    Srivastava, R.K., 2008. Global Intracratonic Boninite-Norite Magmatism during the Neoarchean—Paleoproterozoic: Evidence from the Central Indian Bastar Craton. International Geology Review 50, 61-74.
    Srivastava, R.K., Gautam, G.C., 2009. Precambrian mafic magmatism in the Bastar craton, Central India. Journal of the Geological Society of India 73, 52.
    Srivastava, R.K., Gautam, G.C., 2012. Early Precambrian mafic dyke swarms from the Central Archaean Bastar craton, India: geochemistry, petrogenesis and tectonic implications. Geological Journal 47, 144-160.
    Srivastava, R.K., Gautam, G.C., 2015. Geochemistry and petrogenesis of Paleo–Mesoproterozoic mafic dyke swarms from northern Bastar craton, central India: Geodynamic implications in reference to Columbia supercontinent. Gondwana Research 28, 1061-1078.
    Srivastava, R.K., Jayananda, M., Gautam, G.C., Samal, A.K., 2014. Geochemical studies and petrogenesis of ~2.21–2.22 Ga Kunigal mafic dyke swarm (trending N-S to NNW-SSE) from eastern Dharwar craton, India: implications for Paleoproterozoic large igneous provinces and supercraton superia. Mineralogy and Petrology 108, 695-711.
    Srivastava, R.K., Pimentel, M.M., Gautam, G.C., 2016. Nd-isotope and geochemistry of an early Palaeoproterozoic high-Si high-Mg boninite–norite suite of rocks in the southern Bastar craton, central India: petrogenesis and tectonic significance. International Geology Review 58, 1596-1615.
    Srivastava, R.K., Samal, A.K., Gautam, G.C., 2015. Geochemical characteristics and petrogenesis of four Palaeoproterozoic mafic dike swarms and associated large igneous provinces from the eastern Dharwar craton, India. International Geology Review 57, 1462-1484.
    Srivastava, R.K., Singh, R.K, 2003. Geochemistry of high-Mg mafic dykes from the Bastar Craton: Evidence of Late Archaean boninite-like rocks in an intracratonic setting. Current Science 85, 808-811.
    Srivastava, R.K., Singh, R.K., 2004. Trace element geochemistry and genesis of Precambrian sub-alkaline mafic dikes from the central Indian craton: evidence for mantle metasomatism. Journal of Asian Earth Sciences 23, 373-389.
    Srivastava, R.K., Sivaji, C., Chalapathi Rao, N., 2008. Indian dyke through space and time: Retrospect and prospect. In: Srivastava, R.K., Sivaji, C., Chalapathi Rao, N. (Eds.), Indian Dykes: Geochemistry, Geophysics and Geochronology. Narosa Publishing House, New Delhi, 1-18.
    Straub, S.M., Gomez-Tuena, A., Stuart, F.M., Zellmer, G.F., Espinasa-Perena, R., Cai, Y., Iizuka, Y., 2011. Formation of hybrid arc andesites beneath thick continental crust. Earth and Planetary Science Letters 303, 337-347.
    Straub, S.M., LaGatta, A.B., Pozzo, M.D., Lillian, A., Langmuir, C.H., 2008. Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochemistry, Geophysics, Geosystems 9. Q03007 http://dx.doi.org/10.1029/2007GC001583.
    Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A. D., Norry, M. J. (Eds.), Magmatism in the Ocean Basins. Geological Society London Special Publications 42, 313-345.
    Taylor, R.N., Nesbitt, R.W., Vidal, P., Harmon, R.S., Auvray, B., Croudace, I.W., 1994. Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan. Journal of Petrology 35, 577-617.
    Valdiya, K.S. (Eds.), 2015. The making of India: geodynamic evolution. (2nd edition), Springer International Publishing, Switzerland, 31-85.
    Wang, K., Plank, T., Walker, J.D., Smith, E., 2002. A mantle melting profile across the Basin and Range, SW USA. Journal of Geophysical Research 107, ECV 5-1-ECV 5-21.
    Yale, L.B., Carpenter, S.J., 1998. Large igneous provinces and giant dike swarms: proxies for supercontinent cyclicity and mantle convection. Earth and Planetary Science Letters 163, 109-122.
    Zachariah, J. K., Hanson, G. N., Rajamani, V., 1995. Postcrystallization disturbance in the neodymium and lead isotope systems of metabasalts from the Ramagiri schist belt, southern India. Geochimica et Cosmochimica Acta, 59(15), 3189-3203.
    Zhao, G., Sun, M., Wilde, S.A., Li, S., 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Reviews 67, 91-123.

    下載圖示
    QR CODE