研究生: |
徐有駿 Hsu, Yu-Chun |
---|---|
論文名稱: |
紅外線奈米塗料提升R-600a冰箱性能之研究 Research on Enhancing the Performance of R-600a Refrigerator by Using Infrared Water-based Nano-coating |
指導教授: |
鄧敦平
Teng, Tun-Ping |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 紅外線奈米塗料 、異丁烷 、性能係數 、能源因數 、環境溫度 |
英文關鍵詞: | infrared water-based nano-coating (IWNC), isobutene (R-600a), coefficient of performance (COP), the energy factor (EF), ambient temperature |
論文種類: | 學術論文 |
相關次數: | 點閱:127 下載:21 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對紅外線奈米塗料(IWNC)塗佈於異丁烷(R-600a)冰箱的冷凝器進行提升冰箱性能之可行性研究。首先利用複立葉紅外線光譜儀(FTIR)選擇出較高紅外線吸收值的三種紅外線材料,並使用二階合成法製作這三種材料的IWNC。接著經由FTIR、發射率、熱交換實驗的結果來篩選出最佳的紅外線材料與濃度。最後將IWNC塗佈於R-600a冰箱冷凝器上,並探討冷凝器有無塗佈IWNC在不同的環境溫度(26、30、34 ℃)下的無載下拉測試與環境溫度30℃的24小時加載運轉測試的性能係數(COP)、能源因數(EF)、庫內溫度、耗電量等相關參數,藉以評估IWNC對於冰箱性能的影響。
研究結果顯示,IWNC最佳的添加材料為多壁奈米碳管(MWCNTs),最佳濃度為4 wt.%。與未塗佈MWCNTs/IWNC的R-600a冰箱測試數據相比較,冷凝器塗佈4 wt.%的MWCNTs/IWNC之後的高壓壓力可減低5.74%,EF提升7.89%,耗電量下降7.15%,COP則提升6.17%。相關研究結果顯示在R-600a 冰箱的冷凝器上塗佈MWCNTs/IWNC確實可提升冰箱的性能與降低耗電量,對於節能減碳將將能有所助益。
In this study, the infrared water-based nano-coating (IWNC) was coated on the condenser of isobutane (R-600a) refrigerator to demonstrate the feasibility for enhancing the performance of the refrigerator. First, the Fourier transform infrared spectroscopy (FTIR) was used to select three infrared materials with high infrared absorbance to be prepared for the IWNC by a two-step synthesis method. Then, the optimal infrared materials and concentration was selected by using the FTIR, emissivity, and heat exchange experiments. Finally, the IWNC was coated on the condenser of R-600a refrigerator for evaluating the coefficient of performance (COP), the energy factor (EF), the freezer temperature, electricity consumption, and other related parameters under the conditions of no load pull-down test at different ambient temperatures (26, 30, and 34 oC) and 24-hour loading test at ambient temperature of 30 oC, respectively, to assess the performance of the refrigerator with and without the IWNC.
The results showed that the optimal infrared material and concentration was multi-walled carbon nanotubes (MWCNTs) and 4 wt.%, respectively. The condenser of R-600a refrigerator with 4 wt.% MWCNTs/IWNC reduced the high-pressure and electricity consumption 5.74% and 7.15%, respectively; enhanced COP and EF 6.17% and 7.89%, respectively; as compared with the test data of original R-600a refrigerator. The relevant results displayed that the condenser of an R-600a refrigerator coated by the MWCNTs/IWNC indeed improved performance and reduced electricity consumption of the refrigerator, which is helpful for energy conservation and carbon reduction.
[1] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles,” Appl. Phys. Lett, vol. 78, no. 6, pp. 718–720, 2001.
[2] H. E. Patel, S. K. Das, T. Sundararagan, A. S. Nair, B. Geoge, and T. Pradeep, “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects,” Appl. Phys. Lett, vol. 83, no. 14, pp. 2931-2933, 2003.
[3] K. Y. Leong, R. Saidur, S. N. Kazi, and A. H. Mamun, “Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator),” Appl. Therm. Eng, vol. 30, no. 17-18, pp. 2685-2692, 2010.
[4] S. M. Fotukian, and M. N. Esfahany, “Experimental investigation of turbulent convective heat transfer of dilute r-Al2O3/water nanofluid inside a circular tube,” Int. J. Heat Fluid Flow, vol. 31, no. 4, pp. 606–612, 2010.
[5] A. R. Sajadi, and M. H. Kazemi, “Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube,” Int. Commun. Heat Mass Transf, vol. 38, no. 10, pp. 1474–1478, 2011.
[6] S. M. Peyghambarzadeh, S. H. Hashemabadi, M. Naraki, and Y. Vermahmoudi, “Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator,” Appl. Therm. Eng, vol. 52, no. 1, pp. 8-16, 2013.
[7] S. U. S.Choi, Z. G. Zhang, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett, vol. 79, no. 14, pp. 2252–2254, 2001.
[8] T. X. Phuoc, M. Massoudi, and R. H. Chen, “Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan,” Int. J. Therm. Sci, vol. 50, no. 1, pp. 12–18, 2011.
[9] M. Fakoor-Pakdaman, and M. A. Akhavan-Behabadi, P. Razi, “An empirical study on the pressure drop characteristics of nanofluid flow inside helically coiled tubes,” Int. J. Therm. Sci, vol. 65, pp. 206-213, 2013.
[10] B. H. Lim, H. W. Lee, B. K. Chong and J. Dongsoo, “Testing of a Hydrocarbon Mixture in Domestic Refrigerators,” ASHRAE Trans. Symposia, pp. 1077~1084, 1996.
[11] G. D. Mathur, “Heat Transfer Coefficients for Propane (R-290) Isobutane (R-600a), and 50/50 Mixture of Propane and Isobutane,” ASHRAE Trans. Symposia, pp. 1159~1172, 1998.
[12] 林振源、顏貽乙,“HC冷媒特性與應用情形”,中國冷凍空調雜誌,第77-82頁,第38卷,1998。
[13] 李昭仁,“環保冷媒R-290應用於冷藏、冷凍系統之性能研究”,國立台灣大學機械工程研究所,碩士論文,1998。
[14] 李舜祺,“環保冷媒異丁烷R-600a應用於冷凍系統之研究”,國立台灣大學機械工程研究所,碩士論文,1998。
[15] Y. S. Lee, and C. C. Su, “Experimental studies of isobutane (R-600a) as the refrigerant in domestic refrigeration system,” Appl. Therm. Eng, vol. 22, no. 5, pp. 507-519, 2002.
[16] M. Fatouh, and M. E. Kafafy, “Assessment of propane/commercial butane mixtures as possible alternatives to R134a in domestic refrigerators,” Energy Conv. Manag, vol. 47, pp. 2644-2658, 2006.
[17] Y. J. Guan, P. Wei, and L. Tan, “Research development of tourmaline and it’s application in interior wall coatings,” Appl. Chem. Ind., 2006.
[18] S. H. Kim, S. H. Hwang, S. K. Hong, J. K. Seo, H. S. Sung, S. W. Park, and J. H. Shin, “The Clinical Efficacy, Safety and Functionality of Anion Textile in the Treatment of Atopic Dermatitis,” Ann Dermatol, vol. 24, no. 4, 2012.
[19] 黎青崙,“遠紅外線纖維與織物”,高分子工業,第61-66頁,第165卷,2013。
[20] 李旭生、夏方乾、許仲德、劉希山、劉乃慧,“高溫遠紅外節能塗料在鑄管熱處理爐上的應用”,山東治金,第62頁,第27卷,第2期,2005。
[21] F. Li, J. Liang, J. Meng, Y. Ding, G. Liang, G. Xue, and L. Liu, “Effect of tourmaline/resin composite materials on the combustion of diesel oil for oil-burning boiler,” J. Chin. Ceram. Soc., vol. 4, 2007.
[22] 姚國軍,“FRS-DQ遠紅外線節能劑在加熱爐上的應用”,大慶國鑫節能有限公司,第77-78頁,第19卷,第3期,2000。
[23] 梁龍、吳增泊,“高溫遠紅外節能塗料”,http: //szth.yp.sina.net/n15545.html.
[24] G. Xue, Y. Wang, L. Zhang, and X. Zhang, “Preparation of Tourmaline Composite Materials and Its Property of Far Infrared Radiance,” Adv. Mater. Res., vol. 96, pp. 165-170, 2010.
[25] X. l. Qin, R. Yang, Y. f. Wang, L. Luo, and S. f. Qiao, “Study of the Effect of Negative Ions on Energy Efficiency of Diesel Engines,” For. mach. & Woodworking Equip., vol. 3, 2013.
[26] 李孟達,“遠紅外線材料應用於冰水主機之性能分析”,國立台北科技大學冷凍空調研究所,碩士論文,2014。
[27] Herschel W, “Experiments on the refrangibility of the in-visible rays of the Sun,” Phil. Trans. Roy. Soc. London, vol. 90, pp. 284, 1800.
[28] 行政院環境保護署,非屬原子能游離輻射管制網,電磁輻射。
[29] J.S. Dover, T.J. Phillips, and K.A. Arndt, “Cutaneous effects and therapeutic uses of heat with emphasis on infrared radiation,” J Am Acad Dermatol, vol. 20, pp. 278-286, 1989.
[30] Y. Udagawa, and H. Nagasawa, “Effects of far-infrared ray on reproduction, growth, behaviour and some physiological parameters in mice,” In Vivo, vol. 14, pp. 321-326, 2000.
[31] Y. Hamada, F. Teraoka, and T. Matsumotob, “Effects of far infrared ray on Hela cells and WI-38 cells,” Int. Congress Ser., vol. 1255, pp. 339-341, 2003.
[32] 謝鸚爗、林招膨、劉威忠、林群智,“遠紅外線在醫學上之應用及其作用機制”,台灣應用輻射與同位素雜誌,第333-340頁,第3卷,第3期, 2007。
[33] D. A. Skoog, and J. J. Leary, “Principles of Instrumental Analysis 4th Ed,” Saunders College Pulishing, vol. 252, 1992.
[34] L. D. Chang, and C. M. Mou, “Nanomaterials and Nsnostructure,” Peking: Science Press, 2001.
[35] R. Birringer, “Nanocrystalline Materials,” Mater. Sci. Eng. A, vol. 117, pp.33-43, 1989.
[36] F. S. Li, P. Cui, Y. Yang, and H. Jiang, “The treatment technology and application of nicrometer-nanometer powders,” Beijing: National defense Ind. press, pp. 15-151, 2002.
[37] H. Akoh, Y. Tsukasaki, S. Yatsuya, and A. Tasaki, “Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate,” J. Cryst. Growth, vol. 45, pp. 495-500, 1978.
[38] M. Wagener, B.S. Murty, and B. Gunther, “Preparation of metal nanosuspensions by high-pressure DC-sputtering on running liquids,” in: S. Komarnenl, J.C. Parker, H.J. Wollenberger (Eds.), Nanocrystalline and Nanocomposite Materials II, 457, Mater. Res. Soc., Pittsburgh, PA, pp. 149-154, 1997.
[39] J. A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson, and S. Lee, “Enhanced thermal conductivity through the development of nanofluids,” in Nanophase and Nanocomposite Materials II, edited by S. Komarneni, J. C. Parker, and H. J. Wollenberger, Mater. Res. Soc. Symp. Proc. 457, Warrendale, PA, pp. 9-10, 1997.
[40] H. Zhu, Y. Lin, and Y. Yin, “A novel one-step chemical method for preparation of copper nanofluids,” J. Colloid Interface Sci, vol. 227, pp. 100–103, 2004.
[41] S. A. Kumar, K. S. Meenakshi, B.R.V. Narashimhan, S. Srikanth, G. Arthanareeswaran, “Synthesis and characterization of copper nanofluid by a novel one-step method,” Mater. Chem. Phys, vol. 113, pp. 57–62, 2009.
[42] X. H. Wei, H. Zhu, T. Kong, and L. Wang, “Synthesis and thermal conductivity of Cu2O nanofluids,” Int. J. Heat Mass Transf, vol. 52, pp. 4371–4374, 2009.
[43] M. Abareshi, E. K. Goharshadi, S. M. Zebarjad, H. K. Fadafan, and A.Youssefi, “Fabrication characterization and measurement of thermal conductivity of Fe3O4 nanofluids,” J. Magn. Magn. Mater, vol. 322, pp. 3895–3901, 2010.
[44] C. H. Lo, T. T. Tsung, and L. C. Chen, “Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS),” J. Cryst. Growth, vol. 277, pp. 636-642, 2005.
[45] C. H. Lo, T. T. Tsung, and L. C. Chen, “Ni nano-magnetic fluid prepared by submerged arc nano synthesis system (SANSS),” JSME Int. J., Ser. B: Fluids Therm. Eng., vol. 48, pp. 750-755, 2006.
[46] H. Chang, and Y. C. Chang, “Fabrication of Al2O3 nanofluid by a plasma arc nanoparticles synthesis system,” J. Mater. Process. Technol, vol. 207, pp. 193–199, 2008.
[47] Y. Hwang, J. K. Lee, J. K. Lee, Y. M. Jeong, S. i. Cheong, Y. C. Ahn, and S. H. Kim, “Production and dispersion stability of nanoparticles in nanofluids,” Powder Technol, vol. 186, pp. 145–153, 2008.
[48] S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” J. Heat Transf., vol. 121, pp. 280-289, 1999.
[49] X. Wang, X. Xu, and S. U. S. Choi, “Thermal conductivity of nanoparticle–fluid mixture,” J. Thermophys. Heat Transf, vol. 13, pp. 474-480, 1999.
[50] S. M. S. Murshed, K. C. Leong, and C. Yang, “Enhanced thermal conductivity of TiO2–water based nanofluids,” Int. J. Therm. Sci, vol. 44, pp. 367-373, 2005.
[51] D. Wen, and Y. Ding, “Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids),” IEEE Trans. Nanotechnol., vol. 5, pp. 220-227, 2006.
[52] M. Moosavi, E. K. Goharshadi, and A. Youssefi, “Fabrication characterization, and measurement of some physicochemical properties of ZnO nanofluids,” Int. J. Heat Fluid Flow, vol. 31, pp. 599–605, 2010.
[53] C. Choi, H. S. Yoo, and J. M. Oh, “Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants,” Curr. Appl. Phys., vol. 8, pp. 710-712, 2008.
[54] D. Wen, and Y. Ding, “Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids),” IEEE Trans. Nanotechnol., vol. 5, pp. 220-227, 2006.
[55] S. M. S. Murshed, K. C. Leong, and C. Yang, “Enhanced thermal conductivity of TiO2–water based nanofluids,” Int. J. Therm. Sci, vol. 44, pp. 367-373, 2005.
[56] Y. Xuan, and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. Heat and Fluid Transf., vol. 21, pp. 58-64, 2000.
[57] Y. J. Hwang, Y. C. Ahn, H. S. Shin, C. G. Lee, G. T. Kim, H. S. Park, and J. K. Lee, “Investigation on characteristics of thermal conductivity enhancement of nanofluids,” Curr. Appl. Phys., vol. 6, pp. 1068-1071, 2006.
[58] 永朕材料科技股份有限公司-電氣石陶瓷粉,http://www.qfnano.url.tw/product_cg74723.html.
[59] US 20040216722 A1, “Method and apparatus to enhance combustion of a fuel,” US Patent & Trademark Office, 2004.
[60] CN101045628 A, “Composite ceramic material for increasing combustion efficiency of IC engine and preparation process thereof,” State Intellectual Property Office of The P.R.C, 2008.
[61] CN 101245241 A, “Far infrared light wave energy-saving material and product,” State Intellectual Property Office of The P.R.C, 2008.
[62] US 20110186010 A1, “Infrared-emitting ceramics for fuel activation,” US Patent & Trademark Office, 2011.
[63] US 20120145265 A1, “System for Conditioning Fluids Using Fermi Energy,” US Patent & Trademark Office, 2012.
[64] W.F. Stoecker, and J.W. Jones, “Refrigeration and Air Conditioning,” 2nd, McGraw-Hill,USA, 1982.
[65] NIST, NIST Reference Fluid Thermodynamic and Transport Properties Database: Version 8.0 (REFPROP 8.0), 2007.
[66] NIST, NIST Vapor Compression Cycle Design Program: Version 4.0 (CYCLE_D 4.0), 2009.