研究生: |
林坤宏 Kun-Hong Lin |
---|---|
論文名稱: |
以非監督式類神經網路實現高維度平行計算之主成分分析的硬體架構實現 Hardware Implementation of Principal Component Analysis for High-Dimensional Parallel Computing by Unsupervised Neural Network |
指導教授: |
黃文吉
Hwang, Wen-Jyi |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 主成分分析 、可程式化系統晶片 |
英文關鍵詞: | PCA, GHA, SOPC, FPGA |
論文種類: | 學術論文 |
相關次數: | 點閱:168 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對主成分分析(Principle Components Analysis, PCA)提出一個以Generalized Hebbian Algorithm (GHA)為基礎的高維度平行計算之硬體架構。
我們希望利用硬體的特性來達到平行計算能力,進而加速運算效能,同時希望透過擷取高維度的特徵向量來取得較好的分類成功率,在突觸權重向量更新單元,將原本m筆的資料切割成b等分,重複利用q份硬體電路來運算b次,即m=q×b,m指的是訓練資料的維度,b指的是我們將資料切割成幾等分,q指的是每一等分的資料量,如此一來就可達到硬體共享的機制,也將記憶單元共享給不同的計算元件使用,因此可以降低面積成本(Area Cost),也能實現較高維度的硬體架構。
我們將硬體電路實作在可程式化系統晶片(System on a Programmable Chip,SOPC)的平台中,並且利用此平台來測試與驗證實驗數據,根據實驗結果來證明我們所提出的硬體架構,是具有較好的分類成功率及較低的硬體資源消耗,也與軟體做時間測量比較,來驗證硬體的加速效能。
[1] Yi-Tsan Hung, “ 以Generalized Hebbian Algorithm為基礎的主成分分析之硬體實現, ” M.S. thesis, Dept. Comput. Sci. and Inform. Eng., Nat. Taiwan Normal Univ., Taipei, Taiwan, 2010.
[2] Cyclone III Device Handbook, 2010, Altera Corporation. http://www.altera.com/literature/hb/cyc3/cyclone3_handbook.pdf
[3] Zeidenberg, Matthew. Neural Networks in Artificial Intelligence. 1990: Ellis Horwood Limited. 1990.
[4] Jolliffe, I. T., “ Principal Component Analysis., ” Springer-Verlag, pp. 487, 1986
[5] 133.Chin-Shu Chang, Teh-Lu Liao, Po-Yun Hsu, Kuo-Kuang Chen, “ Human face recognition system using modified PCA algorithm and ARM platform, ” Computer Communication Control and Automation (3CA), 2010 International Symposium on, On page(s): 294 - 297, Volume: 2 Issue: , 5-7 May 2010
[6] Sattler, M., Sarlette, R., and Klein, R., “ Simple and efficient compression of animation sequences, ” Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2005.
[7] Soderstrom, U., and Li, H., “ High Definition Wearable Video Communication, ” Lecture Notes in Computer Science, Vol. 5575, pp. 500-512, 2009.
[8] Kim, K., Franz, M.O., and Scholkopf, B., “ Iterative kernel principal component analysis for image modeling, ” IEEE Trans. Pattern Analysis and Machine Intelligence, pp.1351V1366, 2005.
[9] Gottumukkal, R., and Asari, V.K., “ An improved face recognition technique based on modular PCA approach, ” Pattern Recognit. Lett., vol. 25, no. 4, pp. 429–436, Mar. 2004.
[10] Navarrete, P., and Ruiz-del-Solar, J., “ Eigenspace-based recognition of faces: Comparisons and a new approach, ” in Proc. ICIAP, pp. 42–47, 2001.
[11] Perlibakas, V., “ Distance measures for PCA-based face recognition, ” Pattern Recognit. Lett., vol. 25, no. 6, pp. 711-724, Apr. 2004.
[12] Yambor, W.S., Draper, B.A., Beveridge, J.R., “ Analyzing PCA-based Face Recognition Algorithms: Eigenvector Selection and Distance Measures, ” in Christensen, H., Phillips, J. (eds.) Empirical Evaluation Methods in Computer Vision. World Scientific Press, 2002.
[13] Yang, J., Zhang, D., Frangi, A. F., and Yang, J.Y., “ Two-dimensional PCA: A new approach to appearance-based face representation and recognition, ” IEEE Trans. Pattern Anal. Mach. Intell., Vol. 26, no. 1, pp. 131–137, Jan. 2004
[14] Zuo, W., Zhang, D., and Wang, K., “ Bidirectional PCA with assembled matrix distance metric for image recognition, ” IEEE Trans. Systems, Man, and Cybernetics—PART B: Cybernetics, pp.863-872, Vol. 36, 2006.
[15] Partridge, M., and Calvo, R., “ Fast dimensionality reduction and Simple PCA. Intelligent Data Analysis, ” pp. 292–298, 1997.
[16] Sharma, A., and Paliwal, K.K., “ Fast principal component analysis using fixed-point algorithm, ” Pattern Recognition Letters, pp. 1151-1155, 2007.
[17] Storer, M., Roth P.M., Urschler, M., and Bischof, H., “ Fast-Robust PCA, ” Lecture Notes in Computer Science, Vol.5575, pp.430-439, 2009.
[18] Erkki Oja. “ Simplied neuron model as a principal component analyzer. ” Journal of Mathematical Biology, 15 (3): 267–273, November 1982.
[19] Haykin, S., Neural Networks and Learning Machines, 3rd Ed., Pearson, 2009.
[20] Sanger, T.D., “ Optimal unsupervised learning in a single-layer linear feedforward network. ” Neural Networks, 2:459–473, 1989.
[21] Hauck, S., and Dehon, A., Reconfigurable Computing, Morgan Kaufmann, 2008.
[22] Brown, S., FPGA architectural research: a survey, IEEE Design & Test of Computers, Vol. 13, pp.9-15, 1996.