研究生: |
張依湄 Chang, Yi-Mei |
---|---|
論文名稱: |
路易士酸輔佐六員環4-烯炔醯胺或炔-炔醯胺化合物的分子內環化反應:含氮雙環[3.2.1]辛烷、螺旋[3.5]壬烷及異喹碄的合成 Lewis acid-Promoted Intramolecular Cyclization Reaction of Six-Member Ring 4-Ene- and 1-Yne-Ynamides: Synthesis of 6-Azabicyclo[3.2.1]octanes, Spiro[3.5]nonanes, and Isoquinolines |
指導教授: |
葉名倉
Yeh, Ming-Chang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 629 |
中文關鍵詞: | 路易士酸 、三氯化鋁 、三溴化鐵 、烯炔醯胺 、炔-炔醯胺 、含氮雙環[3.2.1]辛烷 、螺旋[3.5]壬烷 、異喹啉 |
英文關鍵詞: | Lewis acid, aluminum(III) chloride, iron(III) bromide, enynamides, 1-yneynamides, azabicyclo[3.2.1]octane, spiro[3.5]nonane, isoquinoline |
DOI URL: | https://doi.org/10.6345/NTNU202202064 |
論文種類: | 學術論文 |
相關次數: | 點閱:138 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本文分為三個主題,主要為路易士酸輔佐六員環4-烯炔醯胺分子或是六員環1-炔-炔醯胺分子,進行分子內環化反應,合成含氮雙環[3.2.1]辛烷化合物、螺旋[3.5]壬烷化合物以及異喹啉化合物。
(1) 以三氯化鋁輔佐4-炔醯胺環己烯進行分子內環化反應,成功合成含氮雙環[3.2.1]辛烷化合物。酸性條件下,此含氮橋形化合物可經水合反應生成高產率以及高立體選擇性的3-烷醯基-4-氯環已胺化合物,兩者產物皆為天然物重要的骨架。
(2) 以三溴化鐵輔佐六員環炔-炔醯胺進行分子內環化反應,成功合成溴取代之螺旋[3.5]壬烷化合物。此反應路徑由N-keteniminium ion經重排作用得到C-ketenimine,再行環化反應,形成螺旋[3.5]壬烷化合物,此合環反應優點為起始物合成步驟短、使用便宜的三溴化鐵以及反應時間短。
(3) 以金銀共催化1-[(2-炔醯胺)乙基]環己烯化合物進行分子內環化反應,成功合成異喹啉化合物,此合環反應具有操作簡便與溫和的反應條件,得到異喹啉化合物。
Abstract
This dissertation covered Lewis acid-promoted intramolecular cyclization reactions of six-membered ring 4-ene- and 1-yne-ynamides afforded 6-azabicyclo[3.2.1]octane, spiro[3.5]nonane, and isoquinoline derivatives.
(1) The aluminum(III) chloride-promoted cyclization/chlorination of six-membered ring 4-(N-ethynylamino)cyclohexene enabled a straight forward approach to the 6-azabicyclo[3.2.1]octane. Acid treatment of the resultant chlorinated arylideneazabicyclooctanes furnished 3-alkanoyl-4-chlorocyclohex
anamines in excellent yields and high stereoselectivity.
(2) The iron(III) bromide-promoted cyclization of six-membered ring 1-yneynamides provided brominated spiro[3.5]nonane derivatives. The reaction mechanism was suggested to proceed via rearrangement of N-keteniminium ion to C-ketenimine followed by cyclization of C-ketenimine generated spiro[3.5]nonane derivatives. The reaction had several advantages: easily available starting materials, inexpensive iron (III) bromide, and short reaction times.
(3) The gold (I)-catalyzed intramolecular cyclization of 1-[2-(N-tosyl-N-phenylethynylethyl)]cyclohexene afforded isoquinoline derivatives in fair good yields. The reactions were procedurally simple, efficient, producing isoquinolines under mild reaction conditions.
Keywords: Lewis acid, aluminum(III) chloride, iron(III) bromide, enynamides, 1-yneynamides, azabicyclo[3.2.1]octane, spiro[3.5]nonane, isoquinoline
1. Bick, I. R. C.; Bremner, J. B.; Preston, N. W.; Calder, I. C. J. Chem. Soc. D 1971, 1155.
2. Munk, M. E.; Sodano, C. S.; McLean, R. L.; Haskell, T. H. J. Am. Chem. Soc. 1967, 89, 4158.
3. Holmes, A. B.; Kee, A.; Ladduwahetty, T.; Smith, D. F. J. Chem. Soc., Chem. Commun. 1990, 1412.
4. Dhudshia, B.; Cooper, B. F.; Macdonald, C. L.; Thadani, A. N. Chem Commun (Camb.) 2009, 463.
5. Denhart, D. J.; Griffith, D. A.; Heathcock, C. H. J. Org. Chem. 1998, 63, 9616.
6. Downham, R.; Ng, F. W.; Overman, L. E. J. Org. Chem. 1998, 63, 8096.
7. Furstoss, R.; Teissier, P.; Waegell, B. J. Chem. Soc. D 1970, 384.
8. Grainger, R. S.; Betou, M.; Male, L.; Pitak, M. B.; Coles, S. J. Org. Lett. 2012, 14, 2234.
9. Han, G.; LaPorte, M. G.; Folmer, J. J.; Werner, K. M.; Weinreb, S. M. J. Org. Chem. 2000, 65, 6293.
10. Quirante, J.; Vila, X.; Escolano, C.; Bonjoch, J. J. Org. Chem. 2002, 67, 2323.
11. DeKorver, K. A.; Wang, X. N.; Walton, M. C.; Hsung, R. P. Org. Lett. 2012, 14, 1768.
12. Prabagar, B.; Nayak, S.; Prasad, R.; Sahoo, A. K. Org. Lett. 2016, 18, 3066.
13. Chen, L.; Cao, J.; Xu, Z.; Zheng, Z. J.; Cui, Y. M.; Xu, L. W. Chem Commun (Camb.) 2016, 52, 9574.
14. Xu, S.; Li, C.; Jia, X.; Li, J. J. Org. Chem. 2014, 79, 11161.
15. Yang, Y.; Liu, H.; Peng, C.; Wu, J.; Zhang, J.; Qiao, Y.; Wang, X. N.; Chang, J. Org. Lett. 2016, 18, 5022.
16. Yeh, M.-C. P.; Shiue, Y. S.; Lin, H. H.; Yu, T. Y.; Hu, T. C.; Hong, J. J. Org. Lett. 2016, 18, 2407.
17. (a) Coste, A.; Karthikeyan, G.; Couty, F.; Evano, G. Angew. Chem. Int. Ed. 2009, 48, 4381; (b) Saito, N.; Saito, K.; Shiro, M.; Sato, Y. Org. Lett. 2011, 13, 2718; (c) Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C.; Vera, E. L. Org. Lett. 2004, 6, 1151.
18. Gogek, C. J.; Moir, R. Y.; Purves, C. B. Can. J. Chem. 1951, 29, 946.
19. (a) Henry, J. R.; Marcin, L. R.; McIntosh, M. C.; Scola, P. M.; Davis Harris, G.; Weinreb, S. M. Tetrahedron Lett. 1989, 30, 5709; (b) Sen, S. E.; Roach, S. L. Synthesis 1995, 1995, 756; (c) Pandey, M. K.; Bisai, A.; Pandey, A.; Singh, V. K. Tetrahedron Lett. 2005, 46, 5039.
20. Katritzky, A. R.; Chang, H.-X.; Yang, B. Synthesis 1995, 1995, 503.
21. Brückner, D. Tetrahedron 2006, 62, 3809.
22. Liu, X.; McCormack, M. P.; Waters, S. P. Org. Lett. 2012, 14, 5574.
23. Carballo, R. M.; Ramirez, M. A.; Rodriguez, M. L.; Martin, V. S.; Padron, J. I. Org. Lett. 2006, 8, 3837.
24. Marion, F.; Coulomb, J.; Courillon, C.; Fensterbank, L.; Malacria, M. Org. Lett. 2004, 6, 1509.
25. Zhong, C. Z.; Tung, P. T.; Chao, T. H.; Yeh, M.-C. P. J. Org. Chem. 2017, 82, 481.
26. (a) Zhou, J.; List, B. J. Am. Chem. Soc. 2007, 129, 7498; (b) Norman, B. H.; Lander, P. A.; Gruber, J. M.; Kroin, J. S.; Cohen, J. D.; Jungheim, L. N.; Starling, J. J.; Law, K. L.; Self, T. D.; Tabas, L. B.; Williams, D. C.; Paul, D. C.; Dantzig, A. H. Bioorg. Med. Chem. Lett. 2005, 15, 5526.
27. Sannigrahi, M. Tetrahedron 1999, 55, 9007.
28. Paulsen, H.; Antons, S.; Brandes, A.; Lögers, M.; Müller, S. N.; Naab, P.; Schmeck, C.; Schneider, S.; Stoltefuß, J. Angew. Chem. Int. Ed. 1999, 38, 3373.
29. Porter, J. R.; Archibald, S. C.; Childs, K.; Critchley, D.; Head, J. C.; Linsley, J. M.; Parton, T. A. H.; Robinson, M. K.; Shock, A.; Taylor, R. J.; Warrellow, G. J.; Alexander, R. P.; Langham, B. Bioorg. Med. Chem. Lett. 2002, 12, 1051.
30. Phillips, D. J.; Davenport, R. J.; Demaude, T. A.; Galleway, F. P.; Jones, M. W.; Knerr, L.; Perry, B. G.; Ratcliffe, A. J. Bioorg. Med. Chem. Lett. 2008, 18, 4146.
31. Brand, S.; de Candole, B. C.; Brown, J. A. Org. Lett. 2003, 5, 2343.
32. Yao, L. F.; Shi, M. Org. Lett. 2007, 9, 5187.
33. O'Brien, J. M.; Kingsbury, J. S. J. Org. Chem. 2011, 76, 1662.
34. Jin, X.; Xu, W.; Yang, J.; Lu, J.; Fu, Y.; Xie, L.; Zhu, Q.; Dong, W. Tetrahedron Lett. 2015, 56, 6287.
35. Nayak, S.; Ghosh, N.; Sahoo, A. K. Org. Lett. 2014, 16, 2996.
36. Murai, M.; Uemura, E.; Hori, S.; Takai, K. Angew. Chem. Int. Ed. 2017, 56, 5862.
37. Hori, S.; Murai, M.; Takai, K. J. Am. Chem. Soc. 2015, 137, 1452.
38. Le, P. Q.; May, J. A. J. Am. Chem. Soc. 2015, 137, 12219.
39. (a) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46; (b) Ishida, T.; Kobayashi, R.; Yamada, T. Org. Lett. 2014, 16, 2430.
40. Holden, C. M.; Sohel, S. M.; Greaney, M. F. Angew. Chem. Int. Ed. 2016, 55, 2450.
41. Su, X.; Sun, Y.; Yao, J.; Chen, H.; Chen, C. Chem Commun (Camb.) 2016, 52, 4537.
42. Wang, X. N.; Winston-McPherson, G. N.; Walton, M. C.; Zhang, Y.; Hsung, R. P.; DeKorver, K. A. J. Org. Chem. 2013, 78, 6233.
43. Sakai, R.; Higa, T.; Jefford, C. W.; Bernardinelli, G. J. Am. Chem. Soc. 1986, 108, 6404.
44. Jakubec, P.; Hawkins, A.; Felzmann, W.; Dixon, D. J. J. Am. Chem. Soc. 2012, 134, 17482.
45. Kaldor, S. W.; Kalish, V. J.; Davies, I., J. F. ; Shetty, B. V.; Fritz, J. E.; Appelt, K.; Burgess, J. A.; Campanale, K. M.; Chirgadze, N. Y.; Clawson, D. K.; Dressman, B. A.; Hatch, S. D.; Khalil, D. A.; Kosa, M. B.; Lubbehusen, P. P.; Muesing, M. A.; Patick, A. K.; Reich, S. H.; Su, K. S.; Tatlock, J. H. J. Med. Chem. 1997, 40, 3979.
46. Frankowski, K. J.; Hirt, E. E.; Zeng, Y.; Neuenswander, B.; Fowler, D.; Schoenen, F.; Aube, J. J. Comb. Chem. 2007, 9, 1188.
47. Sarkar, N.; Banerjee, A.; Nelson, S. G. J. Am. Chem. Soc. 2008, 130, 9222.
48. Chang, M. Y.; Lin, C. H.; Chen, Y. L.; Chang, C. Y.; Hsu, R. T. Org. Lett. 2010, 12, 1176.
49. Zhao, Y.; Jin, J.; Boyle, J. W.; Lee, B. R.; Day, D. P.; Susanti, D.; Clarkson, G. J.; Chan, P. W. J. Org. Chem. 2017, 82, 2826.
50. Sun, W.; Zeng, X.; Miao, C.; Wang, S.; Xia, C. Synthesis 2013, 45, 2391.