簡易檢索 / 詳目顯示

研究生: 黃子洋
Huang, Tzu-Yang
論文名稱: 介電質超表面簡併臨界耦合在增強紅外光吸收之研究
Study of Degenerate Critical Coupling in Dielectric Metasurfaces for Enhanced Infrared Absorption
指導教授: 李敏鴻
Lee, Min-Hung
張俊傑
Chang, Chun-Chieh
口試委員: 李敏鴻
Lee, Min-Hung
張俊傑
Chang, Chun-Chieh
楊斯博
Yang, Zu-Po
口試日期: 2023/07/11
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 70
中文關鍵詞: 介電質超表面簡併臨界耦合紅外光
英文關鍵詞: dielectric metasurface, degenerate critical coupling, infrared
研究方法: 數值模擬方法
DOI URL: http://doi.org/10.6345/NTNU202300752
論文種類: 學術論文
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在利用數值模擬方法,研究半導體介電質超表面中利用簡併臨界耦合來增強其紅外(IR)光的吸收。首先,我們研究在太赫茲 (THz)頻率範圍下,利用矽(Si)介電質超表面來實現簡併臨界耦合的條件。我們的結果顯示,當亞波長矽圓柱方形陣列中的電偶極(ED)和磁偶極(MD)兩個共振模態達成簡併時,矽介電質超表面在頻率ν = 1 THz可以達到高吸收率(~ 90%)。我們利用耦合模理論來擬合超表面的吸收光譜,得到上述兩個共振模態的輻射率(γ)和耗散率 (δ),並從而驗證了當兩個共振模態達成簡併臨界耦合時,兩個模態各別的輻射率和耗損率必須滿足 γ = δ的條件。其次,我們設計了一基於砷化鎵 (GaAs) 圓柱的介電質超表面,來增強短波紅外光波段的吸收。首先,當砷化鎵未摻雜時,通過系統性地改變砷化鎵圓柱的直徑(d)和高度(h),我們成功地在波長λ~ 3.8 μm處使超表面的電偶極和磁偶極兩個共振模態達成簡併。在此特定頻率下,砷化鎵圓柱陣列可將入射光完全反射(即反射率R = 1和透射率T = 0)。 我們進而藉由摻雜在砷化鎵中引入自由載子吸收,來臨界耦合超表面中互為簡併的電偶極和磁偶極兩個共振模態。在此條件下,砷化鎵超表面的吸收率在波長λ= 3.8 μm處可達到90 %。我們在以上兩種情況下,成功證明了半導體介電質超表面的紅外光吸收確實能在遠低於半導體能隙的頻率下增強。我們預期,此利用簡併臨界耦合,達成介電質超表面在低於半導體能隙的頻率下光吸收增強的現象,將可以應用於發展包括雷射和光偵測器的新型紅外光電元件上。

    關鍵字: 介電質超表面、簡併臨界耦合、紅外光

    This thesis is focused on numerical study of degenerate critical coupling in semiconductor dielectric metasurfaces for enhanced infrared (IR) absorption. First, we examine the condition for achieving degenerate critical coupling in a silicon (Si) dielectric metasurface in terahertz (THz) spectral region. We show that high absorption (~ 90 %) can be achieved at ν = 1 THz by spectrally overlapping the electrical dipole (ED) and magnetic dipole (MD) resonance modes supported in a square array of subwavelength Si cylinders. By fitting the absorption spectrum using coupled mode theory, the leakage and dissipation rates, γ and δ, of both resonance modes can be obtained, which in turn verifies the requirement of γ = δ for both modes to be critically coupled. Second, we design a GaAs-cylinder based dielectric metasurface for enhanced absorption in short-wave infrared region. When GaAs is undoped, by systematically varying the diameter (d) and height (h) of GaAs cylinders, we successfully overlap the ED and MD resonance modes at λ ~ 3.8 μm, at which incident light is completely reflected by the GaAs cylinder array (that is, reflectance R = 1 and transmittance T = 0, respectively). Upon introducing free-carrier absorption in GaAs by doping, we show that the absorptance of the GaAs metasurface reaches 90 % at λ= 3.8 μm by critically coupling its degenerate ED and MD resonance modes. In both cases, we demonstrate that enhanced infrared absorption of semiconductor dielectric metasurfaces can indeed occur at an energy far below the semiconductor bandgap. The demonstrated below-bandgap absorption enhancement in dielectric metasurfaces using degenerate critical coupling could potentially be employed for novel infrared optoelectronics including lasers and photodetectors.

    Keyword: dielectric metasurface, degenerate critical coupling, infrared

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 v 第一章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 論文架構 7 第二章 背景與文獻回顧 8 2.1 超表面 8 2.2 介電質超表面 10 2.3 簡併臨界耦合 12 2.4 自由載子吸收 16 第三章 簡併臨界耦合超表面元件設計與光學性質 18 3.1 COMSOL Multiphysics 電磁模擬簡介 18 3.2 簡併臨界耦合超表面元件設計與光學性質 23 第四章 總結 68 4.1 結論與展望 68 參考文獻 69

    [1] P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Delvin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139 (2017).
    [2] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 846 (2016).
    [3] M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3, 813 (2015).
    [4] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso. “Metalens at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190 (2016).
    [5] D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface hologram,” Nat. Commun. 6, 8241 (2015).
    [6] S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426 (2016).
    [7] T. Santiago-Cruz, S. D. Gennaro, O. Mitrofanov, S. Addamane, J. Reno, I. Brener, and M. V. Chekhova, “Resonant metasurfaces for generating complex quantum states,” Science 377, 6609 (2022).
    [8] J. R. Piper, V. Liu, and S. Fan, “Total absorption by degenerate critical coupling,” Appl. Phys. Lett. 104, 251110 (2014).
    [9] J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347 (2014).
    [10] Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105, 181105 (2014).
    [11] L. L. Hale, P. P. Vabishchevich, T. Siday, C. T. Harris, T. S. Luk, S. J. Addamane, J. L. Reno, I. Brener, and O. Mitrofanov, “Perfect absorption in GaAs metasurfaces near the bandgap edge,” Opt. Express 28, 35284 (2020).
    [12] X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25, 191 (2017).
    [13] A. Cardin, K. Fan, and W. J. Padilla, “Role of loss in all-dielectric metasurfaces,” Opt. Express 26, 17669 (2018).
    [14] H. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79, 076401 (2016).
    [15] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334, 6054 (2011).
    [16] S. Jahani, and Z. Jacob, “All-dielectric metamaterials,” Nature Nanotech 11, 23 (2016).
    [17] X. Ming, X. Liu, L. Sun, and W. J. Padilla, “Degenerate critical coupling in all-dielectric metasurface absorbers,” Opt. Express 25, 24659 (2017).
    [18] M. Fox, “Optical Properties of Solids 2nd edition,” 180-181&191-195 (2010).
    [19] https://www.pitotech.com.tw/contents/en/d4693877_COMSOL.html

    無法下載圖示 本全文未授權公開
    QR CODE