簡易檢索 / 詳目顯示

研究生: 董詩云
Tung, Shih-Yun
論文名稱: 阿拉伯芥葉綠體轉運蛋白atTOC159家族基因之組織專一性表現研究
Tissue-specific expression of TOC159 homologous genes in transgenic Arabidopsis
指導教授: 孫智雯
Sun, Chih-Wen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 36
中文關鍵詞: atTOC159同源基因轉殖植株GUS報導基因
英文關鍵詞: atTOC159 homologous gene, transgenic plant, GUS reporter gene
DOI URL: https://doi.org/10.6345/NTNU202203609
論文種類: 學術論文
相關次數: 點閱:134下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 葉綠體外膜蛋白Toc159是辨識由細胞核解碼合成之色質體(plastid)蛋白的主要受體。根據序列相似性以及對受質的專一性,可將阿拉伯芥4個Toc159的同源蛋白分為兩個次群:atToc159/atToc90及atToc132/atToc120。本研究藉由不同長度atTOC159家族的基因上游調節序列片段黏合至GUS報導基因的轉殖植株,進行atTOC159家族各成員在組織專一性表現的相關研究。依據研究結果,atTOC159家族基因皆會表現在根及托葉。在其他地上部營養組織,atTOC159、atTOC132和atTOC90在子葉與真葉的葉肉組織,以及特化的表皮細胞,包括保衛細胞、毛狀體(trichome)皆有表現。在生殖組織,atTOC159、atTOC132和atTOC90主要表現在花柱、花萼與花絲的維管束,而atTOC120只在花粉粒表現。除此之外,atTOC120和atTOC90表現量會受到上游5ꞌ端非轉錄區以及領導內插子的促進。總和以上結果,atTOC159家族成員各有不同的組織甚至是細胞專一性,但也相互合作以維持色質體的正常發育。

    Toc159 is the main receptor for import of nuclear-encoded plastid proteins. Based on sequence homology and substrate specificity, four Arabidopsis Toc159 homologues are classified to two subgroups, atToc159/atToc90 and atToc132/atToc120. In order to verify the particular expression pattern of these family members, GUS activity of transgenic plants expressing GUS coding sequence driven by different lengths of the upstream regulatory sequences of atTOC159/atTOC132/atTOC120/atTOC90 were analyzed. Our data suggest that all atTOC159 genes consistently express in roots and stipules. Nevertheless, diverse expression patterns are observed in other above-ground tissues. Except for atTOC120, the rest of three genes are expressed in mesophyll cells of cotyledons and leaves, and specialized epidermal cells such as guard cells and trichomes. AtTOC159, atTOC132 and atTOC90 also express in reproductive tissues such as styles, and vascular bundles of sepals and anther filaments. Intriguingly, atTOC120 is uniquely expressed in pollen grains. The expression yield of atTOC120 and atTOC90 can be significantly up-regulated by their corresponding 5ꞌ untranslated region (5ꞌ UTR) and leader intron sequences. These results conclude that the expression of atTOC159 family members have tissue-type and even cell-type specificity. However, they also express redundantly to secure the normal development of plastids.

    中文摘要 Ⅰ 英文摘要 Ⅱ 緒論 1 研究材料與方法 3 結果 5 討論 9 參考文獻 16 表格與圖片 21 附錄 32

    1. Aloni, R., Schwalm, K., Langhans, M., and Ullrich, C.I. (2003). Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta. 216: 841–853.
    2. Aloni, R., Aloni, E., Langhans, M., and Ullrich, C.I. (2006). Role of auxin in regulating Arabidopsis flower development. Planta. 223: 315–328.
    3. Asano, T., Yoshioka, Y. and Machida, Y. (2004). A defect in atToc159 of Arabidopsis thaliana causes severe defects in leaf development. Genes Genet. Syst. 79: 207–212.
    4. Bauer, J., Chen, K., Hiltbunner, A., Wehrli, E., Eugster, M., Schnell, D. and Kessler, F. (2000). The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature. 403: 203–207.
    5. Cheng, Y., Dai, X., and Zhao, Y. (2007). Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell. 19: 2430–2439.
    6. Chen, Y.J. and Sun, C.W. (2010). Transgenic study of chloroplast translocon gene regulation in Arabidopsis thaliana. Bot. Stud. 51: 147–153.
    7. Demarsy, E., Lakshmanan, A.M., and Kessler, F. (2014). Border control: selectivity of chloroplast protein import and regulation at the TOC-complex. Front. Plant Sci. 5: 483.
    8. Dutta, S., Teresinski, H.J., and Smith, M.D. (2014). A split-ubiquitin yeast two-hybrid screen to examine the substrate specificity of atToc159 and atToc132, two Arabidopsis chloroplast preprotein import receptors. PLoS One. 9: e95026.
    9. Gallegos, J.E. and Rose, A.B. (2015). The enduring mystery of intron-mediated enhancement. Plant Sci. 237: 8–15.
    10. Glover, B.J. (2000). Differentiation in plant epidermal cells. J. Exp. Bot. 51: 497–505.
    11. Hiltbrunner, A., Grunig, K., Alvarez-Huerta, M., Infanger, S., Bauer, J. and Kessler, F. (2004). AtToc90, a new GTP-binding component of the Arabidopsis chloroplast protein import machinery. Plant Mol. Biol. 54: 427–440.
    12. Hust, B. and Gutensohn, M. (2006). Deletion of core components of the plastid protein import machinery causes differential arrest of embryo development in Arabidopsis thaliana. Plant Biol. 8: 18–30.
    13. Infanger, S., Bischof, S., Hiltbrunner, A., Agne, B., Baginsky, S. and Kessler, F. (2011). The chloroplast import receptor Toc90 partially restores the accumulation of Toc159 client proteins in the Arabidopsis thaliana ppi2 mutant. Mol. Plant. 4: 252–263.
    14. Ivanova, Y., Smith, M.D., Chen, K. and Schnell, D. (2004). Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids. Mol. Biol. Cell. 15: 3379–3392.
    15. Jarvis, P. and López-Juez, E. (2013). Biogenesis and homeostasis of chloroplasts and other plastids. Nat. Rev. Mol. Cell Biol. 14: 787–802.
    16. Jefferson, R.A. (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.
    17. Jeong, Y., Mun, J., Lee, I., Woo, J.C., Hong, C.B., and Kim, S. (2006). Distinct roles of the first introns on the expression of Arabidopsis profilin gene family members . Plant Physiol. 140: 196–209.
    18. Kakizaki, T., Matsumura, H., Nakayama, K., Che, F.S., Terauchi, R., and Inaba, T. (2009). Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus. Plant Physiol. 151: 1339–1353.
    19. Kinsman, E.A. and Pyke, K.A. (1998). Bundle sheath cells and cell-specific plastid development in Arabidopsis leaves. Development. 125: 1815–1822.
    20. Kubis, S., Patel, R., Combe, J., Bédard, J., Kovacheva, S., Lilley, K., Biehl, A., Leister, D., Ríos, G., Koncz, C. and Jarvis, P. (2004). Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell. 16: 2059–2077.
    21. Lamesch, P., Berardini, T.Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R., Dreher, K., Alexander, D.L., Garcia-Hernandez, M., Karthikeyan, A.S., Lee, C.H., Nelson, W.D., Ploetz, L., Singh, S., Wensel, A. and Huala, E. (2012). The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40: 1202–1210.
    22. Liu, Y.S. and Sun, C.W. (2013). Characterization of differential expression and leader intron function of Arabidopsis atTOC159 homologous genes by transgenic plants. Bot. Stud. 54: 40.
    23. Mano, Y. and Nemoto, K. (2012). The pathway of auxin biosynthesis in plants. J. Exp. Bot. 63: 2853–2872.
    24. Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.
    25. Norris, S.R., Meyer, S.E., and Callis, J. (1993). The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol. Biol. 21: 895–906.
    26. Oppenheimer, D.G., Herman, P.L., Sivakumaran, S., Esch, J. and Marks, M.D. (1991). A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell. 67: 483–493.
    27. Preece, A. (1965). A manual for histological technicians (2nd ed.). Boston: Little Brown and Co.
    28. Pyke, K.A. and Page, A.M. (1998). Plastid ontogeny during petal development in Arabidopsis. Plant Physiol. 116: 797–803.
    29. Rose, A.B. (2008). Intron-mediated regulation of gene expression. Curr. Top. Microbiol. Immunol. 326: 277–290.
    30. Sessions, R. a and Zambryski, P.C. (1995). Arabidopsis gynoecium structure in the wild and in ettin mutants. Development. 121: 1519–1532.
    31. Sharma, V. and Kumar, S. (2012). Roles of stipules include determination of flowering time and pod harvest index in garden pea grain legume Pisum sativum. Natl. Acad. Sci. Lett. 35: 449–456.
    32. Smyth, D.R., Bowman, J.L., and Meyerowitz, E.M. (1990). Early flower development in Arabidopsis. Plant Cell. 2: 755–767.
    33. Stanga, J.P., Boonsirichai, K., Sedbrook, J.C., Otegui, M.S. and Masson, P.H. (2009). A role for the TOC complex in Arabidopsis root gravitropism. Plant Physiol. 149: 1896–1905.
    34. Strohm, A.K., Barrett-Wilt, G.A. and Masson, P.H. (2014). A functional TOC complex contributes to gravity signal transduction in Arabidopsis. Front. Plant Sci. 5: 148.
    35. Sun, L. and van Nocker, S. (2010). Analysis of promoter activity of members of the PECTATE LYASE-LIKE (PLL) gene family in cell separation in Arabidopsis. BMC Plant Biol. 10: 152.
    36. Tang, L.Y., Nagata, N., Matsushima, R., Chen, Y., Yoshioka, Y., and Sakamoto, W. (2009). Visualization of plastids in pollen grains: Involvement of FtsZ1 in pollen plastid division. Plant Cell Physiol. 50: 904–908.
    37. Tada, A., Adachi, F., Kakizaki, T., and Inaba, T. (2014). Production of viable seeds from the seedling lethal mutant ppi2-2 lacking the atToc159 chloroplast protein import receptor using plastic containers, and characterization of the homozygous mutant progeny. Front. Plant Sci. 5: 243.
    38. Yu, T.S. and Li, H.M. (2001). Chloroplast protein translocon components atToc159 and atToc33 are not essential for chloroplast biogenesis in guard cells and root cells. Plant Physiol. 127: 90–96.
    39. Wang, P., Xue, L., Batelli, G., Lee, S., Hou, Y.J., Van Oosten, M.J., Zhang, H., Tao, W.A., and Zhu, J.K. (2013). Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl. Acad. Sci. U. S. A. 110: 11205–11210.
    40. Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G. V., and Provart, N.J. (2007). An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One. 2: e718.
    41. Zhong, R., Thompson, J., Ottesen, E., and Lamppa, G.K. (2010). A forward genetic screen to explore chloroplast protein import in vivo identifies Moco sulfurase, pivotal for ABA and IAA biosynthesis and purine turnover. Plant J. 63: 44–59.
    42. Zimmermann, P., Hirsch-hoffmann, M., Hennig, L.,and Gruissem, W. (2004). GENEVESTIGATOR . Arabidopsis microarray database and analysis toolbox. Plant Physiol. 136: 2621–2632.

    下載圖示
    QR CODE