簡易檢索 / 詳目顯示

研究生: 詹少華
CHAN SHAO HUA
論文名稱: 研究影響NiO-YSZ陽極性能在固態氧化物燃料電池的應用
Investigating the performance of NiO-YSZ cermet as anode for SOFC
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 100
中文關鍵詞: 固態氧化物燃料電池NiO-YSZ功率密度陽極
英文關鍵詞: solid oxide fuel cell;SOFC, NiO-YSZ, power density, anode
論文種類: 學術論文
相關次數: 點閱:174下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究的目標為決定最好的製程條件以Ni-YSZ為基底的陽極材料應用在固態氧化物燃料電池(SOFC),研究內容包括粉體合成、電池組裝己及性能測試。首先,使用四種不同的化學方法來合成Ni-YSZ粉體,分別為GNP燃燒法、共沉澱法、凝膠-溶膠法和水熱法,之後再用XRD分析相的結構和組成,SEM分析微結構。用GNP法合成得到的粉體效果最好,具有蓬鬆的海綿狀結構,粉末顆粒大小分佈均勻,而且在用共壓法組裝電池時有很好的效果。然後再從改變NiO/YSZ的比例、陽極孔隙率、陽極厚度、電解質厚度、共壓時的壓力和陰極這些條件來製備出最佳化電池,並拿去做電化學測試測性能。最佳的電池為NiO/YSZ比例為60、陽極孔隙率10%、陽極厚度為900 μm、YSZ電解質厚度為20 μm、共壓壓力為10 MPa,在800 ℃通入氫氣的條件下。較高的NiO/YSZ比例會造成三相界面(TPB)降低,使電池性能下降。孔隙率太低也會使TPB降低,太高無法支撐陽極容易使電池結構損壞。陽極厚度太薄無法支撐電池在高溫下容易損壞,太厚則減少氣體傳送速率。電解質則越薄越好可以降低歐姆電阻。壓力則要適中,太低結構還未成型,太高會損壞電池結構。
    更進一步在最佳電池塗上LSM陰極,目前功率密度最多為0.62 W/cm2測量溫度為800℃。

    The objective of this thesis is to determine the optimized condition for Ni-YSZ (yttria stabilized zirconia) based anode materials in solid oxide fuel cell (SOFC) application, and the research includes powder synthesis, cell fabrication and performance test. Ni-YSZ powder is initially synthesized from four different chemical methods;GNP (Glycine-Nitrate Process) combustion, co-precipitation, sol-gel and hydrothermal techniques. The synthesized powder is characterized by X-ray diffractometer (XRD) to analyze the phase-composition and scanning electron microscope (SEM) to examine the microstructure. The GNP synthesized Ni-YSZ, which is considered as the finest powder with the most foam-like structure and homogeneous distribution, is further employed to fabricate anode-supported SOFC by co-pressing method. The molar ratio of NiO/YSZ, anodic porosity, anodic thickness, electrolyte thickness and co-pressing pressure have been systematically examined in this fabrication process and are optimized at 6/4, 10%, 900 μm, 20 μm and 10 MPa, respectively, as cells are tested in the pure H2 fuel at the temperature range of 600 – 800 oC. Higher and lower NiO/YSZ ratio causes less TPB (Three-Phase-Boundary) and electrical conductivity, respectively, and results the degradation of the performance. Similarly, the lower porosity and thinner anode leads to the loss of TPB as well. However, the higher porosity and thicker anode causes the fragility of the ceramic. In addition, the thicker Ni-YSZ also results another problem of H2 transportation in the anodic region. The thickness of electrolyte is directly related to the junction potential of the cell and the 20-m YSZ, the thinnest electrolyte can be fabricated in our process, shows the best performance. Finally, the optimized anode/electrolyte cermet has further screen printed with the excellent cathode of LSM (Lanthanum Strontium Manganite,La0.8Sr0.2MnO3). The optimized SOFC of Ni/YSZ/LSM reaches the maximum power density of 0.62 W/cm2 at 800 ℃.

    中文摘要 I 英文摘要 II 誌謝 V 目錄 VI 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 燃料電池的歷史 1 1.3 燃料電池的種類 2 1.4 固態氧化物燃料電池的發展 9 1.5 固態氧化物燃料電池的原理 9 1.6 固態氧化物燃料電池的型態 11 1.7 固態氧化物燃料電池的組成 14 1.7.1 電解質 18 1.7.2 陽極(Anode) 20 1.7.3 陰極(Cathode) 20 1.8 陽極材料探討 21 1.9 研究動機與目的 22 第二章 實驗流程與方法 24 2.1 實驗藥品與耗材 25 2.2 粉末合成及試片製作之儀器 27 2.3 電池試片製作 29 2.3.1 粉末合成 30 2.3.2 乾壓成形(Dry-pressing)(共壓法) 41 2.3.3 陽極燒結 41 2.3.4 全電池試片製備 42 2.3.5 實驗參數設定 43 2.4 特性分析 43 2.4.1 X-Ray Diffractometer(XRD)粉末分析 43 2.4.2 Scanning Electron Microscope(SEM)微結構分析 44 2.5 電池性能量測 45 2.5.1 燃料電池操作裝置 45 2.5.2 功率密度分析(Power Density) 48 2.5.3 交流阻抗分析(AC Impedance) 48 第三章 結果與討論 49 3.1 陽極粉末特性分析 49 3.1.1 NiO-YSZ粉末製備分析 49 3.1.2 NiO-YSZ粉末製備SEM分析 54 3.1.3 GNP製備粉末分析 56 3.1.4 新舊燃燒法SEM分析 59 3.2 電池特性分析 61 3.2.1 電池燒結溫度分析 61 3.2.2 陽極厚度SEM分析 66 3.2.3 YSZ厚度SEM分析 67 3.2.4 陽極孔洞SEM分析 68 3.2.5 不同比例SEM分析 71 3.2.6 乾壓成型壓力SEM分析 75 3.3 電池性能分析 78 3.3.1 NiO和YSZ比例的電池性能分析 78 3.3.2 陽極孔隙率電池性能分析 80 3.3.3 NiO-YSZ厚度電池性能分析 82 3.3.4 YSZ電解質厚度電池性能分析 84 3.3.5 壓錠壓力電池性能分析 86 3.3.6 不同陰極的電池性能分析 89 3.3.7 電池性能分析總結 91 3.3.8 最佳化電池分析 92 3.4 交流阻抗分析(AC Impedance) 93 第四章 結論與未來展望 95 第五章 參考文獻 98

    1. W. R. Grove, On voltaic series and the combination of gases by platinum. Phil. Mag. Ser 1839, 3, (14), 127-130
    2. W. Nernst, Elektrochem. 1899, 6, 41.
    3. Heinzel., B. C. H. S. A., Materials for fuel-cell technologies. Nature 2001, 44, 345-352.
    4. J. Giner C. Hunter, Model of a Hydrogen-Air Fuel Cell with Alkaline Electrolyte. J. Electrochem. Soc 1969, 116, 1124.
    5. O. Stonehart, Development of Alloy Electrocatalysts for Phophoric Acid Fuel Cells (PAFC). J. Appl. Electrochem 1992, 22, 99.
    6. E. A Ticianelli, C. R. D., A. Redondo, and S. Srinivasan,, Methods to Advance Technology of Proton Exchange Membrane Fuel Cells. J. Electrochemical. Soc. 1998, 135, 2209.
    7. K. Scott, W. M. T., P. Argyropoulos,, Engineering Aspects of the Direct Methanol Fuel Cell System. J. Power Sources 1999, 79, 43.
    8. A.B. Stambouli, E. T., Renewable and Sustainable Energy Reviews 2002, 6, 433.
    9. Song., C., Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21st century. Catalysis Today 2002, 77, 17-49.
    10. N. Q. Minh, High-Tenperature Fuel Cells. Part 2: The Solid Oxide Cells. Chem. Tech 1991, 21, 120.
    11. A. H. Heuer and L.W. Hobbs. (Eds), Science and. Technology of Zirconia, Columbus, OH, USA. Advances in Ceramics 1981, 3.
    12. D. Stöver, Processing and properties of the ceramic conductive multilayer device solid oxide fuel cell (SOFC). Ceramics International 2004, 30, 1107.
    13. N.Q. Minh, Solid oxide fuel cell technology - features and applications. Solid State Ionics 2004, 174, 271.
    14. Singhal., S. C., Advances in solid oxide fuel cell technology. Solid State Ionics 2000, 135, 305-313.
    15. http://www.doitpoms.ac.uk/tlplib/fuel-cells/sofc_electrolyte.php.
    16. Ribeiro, N. F. P., Investigating the microstructure and catalytic properties of Ni/YSZ cermets as anodes for SOFC applications. Applied Catalysis A: General 2009, 353, 305.
    17. Min Chena, B. H. K., Qing Xub , Byung Guk Ahna., Preparation and electrochemical properties of Ni-SDC thin films for IT-SOFC anode. Journal of Membrane Science 2009, 334, 138–147.
    18. Olga A. Marina , C. B., Søren Primdahl and Mogens Mogensen, A Solid Oxide Fuel Cell with a Gadolinia-doped Ceria Anode:Preparation and Performance. Solid State Ionics 1999, 123, 199-208.
    19. T. Matsushima, Effects of sinterability of YSZ powder and NiO content on characteristics of Ni-YSZ cermets. Solid State Ionics 1998, 111, 315.
    20. Emi Ohga, T. A., Kazuya Idemitsu, Yaohiro Inagaki, Sol-gel preparation and characterization of Ni-YSZ cermet electrode. Progress in Nuclear Energy 2007, 49, 546-554.
    21. C. Suciu, A. C. H., E. Dorolti , R. Tetean, NiO/YSZ nanoparticles obtained by new sol-gel route. Chemical Engineering Journal 2008, 140, 586–592.
    22. Tanja Razpotnik , J. M. c., Synthesis of nickel oxide/zirconia powders via a modified Pechini method. Journal of the European Ceramic Society 2007, 27, 1405–1410.
    23. C. J. Brinker and G. W. Scherer, Sol-Gel Science. Acadmic Press 1990, 2.
    24. Kazuyoshi Sato, G. O., Makio Naito, Hiroya Abe, NiO/YSZ nanocomposite particles synthesized via co-precipitation method for electrochemically active Ni/YSZ anode. Journal of Power Sources 2009, 193, 185–188.
    25. E. Geuzens , S. M., J. Cooymans b, J. Luyten , F. Lemoisson , K.Y. Sastry , L. Froyen , J. D'Haen , M.K. Van Bael, H. Van Den Rul, J. Mullens, Synthesis and mechanical and tribological characterization of alumina-yttria stabilized zirconia(YSZ) nanocomposites with YSZ synthesised by means of an aqueous solution-gel method or a hydrothermal. Ceramics International 2008, 34, 1315–1325.
    26. Marjan Marinsˇek, K. Z., Jadran Mae`ek, Ni-YSZ cermet anodes prepared by citrate/nitrate combustion synthesis. Journal of Power Sources 2002, 106, 178-188.
    27. Fukui, T., Performance and stability of SOFC anode fabricated from NiO-YSZ composite particles. J. Power Sources 2002, 110, 91.

    下載圖示
    QR CODE