研究生: |
林宇豪 Lin, Yu-Hao |
---|---|
論文名稱: |
含硼單晶鑽石之火花熔蝕加工特性探討 Study on spark erosion machining characteristics of boronous monocrystalline diamond |
指導教授: |
陳順同
Chen, Shun-Tong |
口試委員: |
趙崇禮
Chao, Choung-Lii 蔡俊毅 Tsay, Jinni 鄭淳護 Cheng, Chun-Hu 張天立 Chang, Tien-Li 陳順同 Chen, Shun-Tong |
口試日期: | 2022/07/28 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 135 |
中文關鍵詞: | 含硼單晶鑽石 、脈衝寬度調變電阻電容電源 、誘導放電加工 、片狀剝蝕 |
英文關鍵詞: | Boronous monocrystalline diamond (BMD), Pulse Width Modulated Resistance-Capacitance (PWM-RC) power supply, discharge-induced machining, flake ablation |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202201287 |
論文種類: | 學術論文 |
相關次數: | 點閱:129 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在對單晶鑽石(Monocrystalline diamond, MCD),以脈衝寬度調變電阻電容(PWM-RC)電源,進行火花熔蝕加工的特性探討。鑽石具有極高阻抗、極高硬度及極高崩潰電壓的特性,屬難加工材料,目前業界大多採用研磨或雷射方式加工,前者加工效率差,後者設備昂貴,且鑽石受雷射高溫影響,易由sp3的結構降至sp2的結構,對鑽石的硬度影響很大。本研究嘗試以PWM-RC放電電源對單晶鑽石進行火花熔蝕加工研究。PWM-RC電源可對電容波形的放電時間作調變,形成具高頻且可變脈衝寬度的放電波列,因此放電能量容易達到鑽石的崩潰電壓。實驗以具有微弱導電性的含硼單晶鑽石(Boronous monocrystalline diamond, BMD)為材料,進行放電加工。結果顯示,依放電電壓、放電頻率及放電波列的各脈衝調變時間等條件,歸納出含硼單晶鑽石的四種材料移除機制,分別為: 熔化、汽化、汽化伴隨熔化和片狀剝蝕。含硼單晶鑽石以汽化及片狀剝蝕的機制移除時,拉曼光譜圖上並未發現石墨變質層,且汽化機制下,鑽石的表面粗糙度可達Ra 0.1 μm。而在0.006 mm/min的電極進給率下,含硼單晶鑽石不但沒有發生石墨變質層,且有最好的火花熔蝕率(0.0176 mm/min)。此外,本研究以輔助電極法,利用含硼單晶鑽石為輔助電極,對完全不導電的單晶鑽石進行放電誘導加工,發現在汽化及片狀剝蝕的機制下,能有效地移除不導電的單晶鑽石材料,而無法以汽化方式移除。本基礎研究針對鑽石的放電進行深入探討,對於鑽石的加工研究有實質幫助。
The purpose of this study is to explore the characteristics of spark erosion processing of monocrystalline diamond (MCD) with the Pulse Width Modulated Resistance-Capacitance (PWM-RC) power supply. Diamond has an extremely high-impedance, high-hardness and high-breakdown voltage, which is a difficult-to-machine material. At present, most of the industry uses grinding or laser processing. The former has poor processing efficiency, the latter requires expensive equipment. Also, it is easy to change the sp3 into the sp2 structures when machining by the laser due to high-temperature, which has a great influence on the hardness of diamond. In this study, the spark erosion processing of MCD is attempted by using the PWM-RC power supply. The PWM-RC power supply can modulate the discharge time of the capacitance waveform to form a discharge pulse train with high-frequency and variable pulse width so that the discharge energy can easily reach the breakdown voltage of the diamond. In the experiment, the boronous monocrystalline diamond (BMD), which has weak electrical conductivity, was used as the material for the discharge process. Experimental results show that four material removal mechanisms of BMD are summarized according to the discharge voltage, discharge frequency, and the modulation time of each discharge of the pulse train: melting, evaporation, evaporation accompanied by melting, and flake ablation. No graphite metamorphic layer is found in the Raman spectra when the BMD is removed by evaporation and flake ablation mechanisms. Under the evaporation mechanism, the surface roughness of the diamond can reach Ra 0.1 μm. At an electrode feed rate of 0.006 mm/min, the BMD not only has no graphite metamorphic layer but also has the best spark erosion rate (SER) (0.0176 mm/min). In addition, by using BMD as auxiliary electrode and conducting discharge-induced machining on completely non-conducting MCD, it is found experimentally that the non-conductive MCD can be effectively removed by evaporation and flake ablation mechanisms, but not by evaporation. This fundamental study will be of substantial help to the diamond machining research.
1.WSTS,工研院ISTI, SIP, 2018產業綜覽半導體現況,https://www.sipo.org.tw/.
2.許巍耀、郭慶祥、陳峰志,2005,超精密加工技術,科儀新知,第二十七卷,第四期,72-80。
3.宋建民,2000,鑽石合成,全華科技圖書股份有限公司。
4.Statista, 2017. Global production of rough diamonds from 2005 to 2016 (in million carats), Statista.
5.宋健民,2000,超硬材料,全華科技圖書股份有限公司。
6.中國砂輪企業股份有限公司,金屬精密加工刀具,http://www.kinik.com.tw/zh-tw/index.html.
7.余樹楨,2011,了不起的結晶-金剛石,科學發展,第458期,46-51.
8.A.P. Malshe, B.S. Park, W.D. Brown, H.A. Naseem, 1999. A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates. Diamond and Related Materials 8, 1198-1213.
9.Y.N. Picard, D.P. Adams, M.J. Vasile, M.B. Ritchey, 2003. Focused ion beam-shaped microtools for ultra-precision machining of cylindrical components. Precision Engineering 27, 59-69.
10.N. Kawasegi, K. Ozaki, N. Morita, K. Nishimura, 2017. Development and machining performance of a textured diamond cutting tool fabricated with a focused ion beam and heat treatment. Precision Engineering 47, 311-320.
11.陳元裕,2018,中頻振動輔助研磨機開發與單晶鑽石陣列微溝磨削研究,國立臺灣師範大學機電工程學系,碩士論文。
12.Y. Yang, G. Zhao, M. Hu, L. Li, N. He, M. Jamil, 2019. Fabrication of CVD diamond micro-milling tool by hybrid machining of laser-induced graphitization and precision grinding. Ceramics International 45, 24127-24136.
13.J. Liu, F. Deng, X. Lu, P. Zhang, L. Zhou, 2019. A study on structural evolution of metamorphic layer on the surface of PCD in electrical discharge machining. Diamond & Related Materials 91, 46-53.
14.L. Liao, Z. Zhang, F. Meng, D. Liu, B. Wu, Y. Li, W. Xie, 2021. A novel slurry for chemical mechanical polishing of single crystal diamond. Applied Surface Science 564, 150431.
15.J.H. Bae, T. Ono, M. Esashi, 2003. Boron-doped diamond scanning probe for thermo-mechanical nanolithography. Diamond and Related Materials 12, 2128-2135.
16.N. Takezawa, T. Yamanoi, K. Iizuka, T. Hiraide, H. Yoshikawa, Y. Ando, M. Mita, H. Oi, M. Takahashi, M. Yoshimoto, 2011. Fabrication of a diamond-based imprint mold by applying diamond CVD on silicon master molds for a glass microlens array. Diamond & Related Materials 20, 866-870.
17.H. Suzuki, M. Okada, K. Fujii, S. Matsui, Y. Yamagata, 2013. Development of micro milling tool made of single crystalline diamond for ceramic cutting. CIRP Annals - Manufacturing Technology 62, 59-62.
18.C. Zhang, X. Lu, Y, Lu, M. Ding, W. Tang, 2019. Titanium boron doped diamond composite: A new anode material. Diamond & Related Materials 98, 107490.
19.M. Ge, P. Wang, W, Bi, P, Ge, 2021. Fabrication of thin resin-bonded diamond wire and its application to ductile-mode wire sawing of mono-crystalline silicon. Materials Science in Semiconductor Processing 126, 105665.
20.李洪岩、李木森、官建紅、鄭克芳,2005,高溫高壓合成含硼金剛石單晶製備工藝初探,材料科學與工程學報,第二十三卷,第四期。
21.李和勝、官建紅、鄭克芳、李木森,2007,高溫高壓下Fe-Ni-C-B係合成IIb型金剛石單晶,北京科技大學學報,第二十九卷,第二期。
22.K. Suzuki, Y. Shiraishi, N. Nakajima, M. Iwai, S. Ninomiya, Y. Tanaka, T. Uematsu, 2009. Development of New PCD Made Up of Boron Doped Diamond Particles and its Machinability by EDM. Advanced Materials Research, Vol. 76-78, 684-689.
23.P. Ashcheulov, J. Sebera, A. Kovalenko, V. Petrak, F. Fendrych, M. Nesladek, A. Taylor, Z. VlckovaZivcova, O. Frank, L. Kavan, M. Dracinsky, P. Hubik, J. Vacik, I. Kraus, I. Kratochvilova, 2013. Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects. The European Physical Journal B 86, 443-451.
24.肖宏宇、李尚升、秦玉琨、梁中翥、張永勝、張東梅、張義順,2014,高溫高壓下摻硼寶石級金剛石單晶生長特性的研究,物理學報,第六十三卷,第十九期。
25.J.G. Buijnsters, M. Tsigkourakos, T. Hantschel, F.O.V. Gomes, T. Nuytten, P. Favia, H. Bender, K. Arstila, J.P. Celis, W. Vandervorst, 2016. Effect of Boron Doping on the Wear Behavior of the Growth and Nucleation Surfaces of Micro- and Nanocrystalline Diamond Films. ACS Appl. Mater. Interfaces, 26381-26391.
26.胡竣泓,2019,具線上放電銳化技術之晶粒分割系統開發與矽晶圓基板晶粒分割研究,國立臺灣師範大學機電工程學系,碩士論文。
27.陳建智,2018,避熱式旋轉放電法於針尖1-μm之單晶鑽石探針高效成形研究,國立臺灣師範大學機電工程學系,碩士論文。
28.曾永華、陳柏穎、鄭宇明、游銘永,2014,人造鑽石和成與應用,科學發展,第497期,60-66.
29.F.P. Bundy, W.A. Bassett, M.S. Weathers, R.J. Hemley, H.K. Mao, A.F. Goncharov, 1996. The pressure-temperature phase and transformation diagram for carbon. Vol. 34, 141-153.
30.官建紅,2006,含硼金剛石單晶的微觀結構、性能與合成機理的研究,山東大學,博士論文。
31.黃武良,2014,天然鑽石的誕生,科學發展,第493期,54-64.
32.余樹楨,2007,人造鑽石,科學發展,第409期,66-71.
33.郝兆印、賈攀、盧燦華,2012,金剛石生長基礎,吉林大學出版社。
34.陳順同,2016,超精密加工講義,國立臺灣師範大學機電工程學系。
35.曾永華、陳柏穎、鄭宇明、游銘永,2014,人造鑽石合成與應用,科學發展,第497期,60-67.
36.苟清泉,1977,含硼黑金剛石的結構與合成機理及其特殊性能的探討,金剛石與磨料磨具工程,Vol.S2, 28-38.
37.T. Schuelke, T.A. Grotjohn, 2013. Diamond polishing. Diamond & Related Materials 32, 17-26.
38.P. Grodzinski, 1953. Diamond Technology-Production Methods for Diamond and Gem Stones. N.A.G. Press.
39.C. Huang, X. Peng, B. Yang, H. Xiang, S. Sun, X. Chen, Q. Li, D. Yin, T. Fu, 2018. Anisotropy effects in diamond under nanoindentation. Carbon 132, 606-615.
40.Alan Wadsworth, 2013,安捷倫科技參數量測手冊第三版,台灣安捷倫科技股份有限公司。
41.胡裕民,半導體材料性質與分析講義,高雄大學應用物理系。
42.科豐國際有限公司,四點探針電阻量測,http://www.mast-tech.com.tw/.
43.蔡曜陽,2016,放電加工應用介紹,國立台灣大學機械工程系,http://ww2.me.ntu.edu.tw/.
44.C. Sommer, 2000. Non-traditional machining handbook. Advance Publishing, Inc, 117-124.
45.S.T. Chen, C.H. Chen, 2015. A novel power source for high-precision, highly efficient micro w-EDM. Journal of Micromechanics and Microengineering, vol. 25, 75027.
46.張渭川,2001,放電加工的結構與實用技術,全華科技圖書股份有限公司。
47.J.A. McGeough, 1988. Advanced methods of machining. Springer Science & Business Media, 128-129.
48.陳祈宏,2014,高效能精微線切割放電加工電源開發,國立臺灣師範大學機電工程學系研究所,碩士論文。
49.O.I. Leipunski, 1939. Snythetic diamonds. Usp Khim, vol.8, pp.1519-1534.
50.C.G. Peters, W.B. Emerson, K.F. Nefflen, F.K. Harris, I.L. Cooter, 1947, Electrical Methods for Diamond-Die Production. Journal of Research of the National Bureau of Standards, Vol.38, 449-464.
51.S.T. Chen, C.H. Chang, 2012. Study on Thinning of a Boron-Doped Polycrystalline Diamond Wheel-Tool by Micro Rotary W-EDM Approach. Applied mechanics and materials, vol. 217, 2167-2170.
52.慶鴻機電工業股份有限公司,2008,CNC線切割放電加工機保養手冊。
53.台中精機,立式綜合加工機,http://www.or.com.tw/uploads/product/ OR_Vcenter_55_70.pdf
54.FAULHABER,微型直流馬達,http://www.faulhaber.com/.
55.National Instruments,高速資料擷取(DAQ)模組,https://www.ni.com/zh-tw.html.
56.固鼎電子企業有限公司,脈衝寬度調變電阻電容電源,http://www.gitek-power.com.tw/.
57.台灣鑽石工業股份有限公司,真空焊接爐,https://www.taiwandiamond.com./
58.Tektronix,混合訊號示波器,http://www.tek.com.
59.漢磊精密科技有限公司,非接觸影像量測儀OMM,http://www.aixon.com.tw/.
60.JEOLUSA, Scanning Elextron Microscope, http://www.jeolusa.com/.
61.JASCO, Laser Raman Spectrometer (NRS-4100), http://jascoinc.com/.
62.OLYMPUS,3D測量雷射共焦顯微鏡,http://www.olympus-ims.com.
63.HP,半導體分析儀,https://www.keysight.com/.
64.SUS304,304不鏽鋼,http://www.matweb.com/.
65.璧山金屬有限公司,黃銅線電極,材質測試報告。
66.FACT江信有限公司,含硼單晶鑽石,http://www.factdiamond.com/.
67.Aerotech, NT130XY Series Two-Axis XY Direct-Drive Nanopositioning Stages, ANT130L Series Single-Axis Linear Direct-Drive Nanopositioning Stages, https://www.aerotech.com/.
68.S. T. Chen, H. Y. Yang, C. W. Du, 2009. Study of an ultrafine w-EDM technique. Journal of micromechanics and microengineering, vol. 19, 115033.
69.黃立文,2019,高頻等脈衝微放電電源開發應用於含硼聚晶鑽石陣列微結構線切割放電研究,國立臺灣師範大學機電工程學系研究所,碩士論文。
70.K. Tseng, H. Lee, J. Chiu, D. Tien, Y. Kao, 2015. A study of EDM machine waveform monitoring and nano silver manufacturing process optimization. The 27th Chinese Control and Decision Conference, 1497-1501.
71.S.T. Chen, C.H. Chen, 2017. Development of a novel micro w-EDM power source with a multiple Resistor-Capacitor (mRC) relaxation circuit for machining high-melting point, -hardness and -resistance materials. Journal of Materials Processing Technology, vol. 240, 370-381.
72.F. Yasushi Electrical, 2014. Discharge Machining Technology for Insulating Ceramics Materials. JSPE, 1207-1212.