簡易檢索 / 詳目顯示

研究生: 蔡雨萍
Tsai Yu-Ping
論文名稱: 新型具側鏈羧酸系強塑劑的合成與對水泥漿流動性的影響
指導教授: 許貫中
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 129
中文關鍵詞: 強塑劑側鏈合成反應物比例分子量流動性吸附
英文關鍵詞: superplasticizer, side chain, synthesis, reactant ratio, molecular weight, fluidity, adsorption
論文種類: 學術論文
相關次數: 點閱:347下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 強塑劑是促進混凝土有良好工作性的關鍵組成。本研究利用聚乙二醇(PEG)、馬來酸酐(MA)合成具側鏈之改質單體(PM),並藉由PEG分子量及PEG/MA莫耳比例之改變,得到不同鏈長與不同結構的改質單體。接著由2-丙烯醯胺-2-甲基丙烷磺酸(AMPSA)、甲基丙烯酸(MAA)與改質單體依不同比例行自由基聚合,反應以過硫酸銨為起始劑及2-甲基丙烯磺酸鈉為鏈轉移劑,利用鏈轉移劑濃度之改變得到一系列不同分子量之新型具側鏈羧酸系強塑劑(PAMP)。以FT-IR、1H-NMR與13C-NMR鑑定合成之改質單體及PAMP結構;GPC測PAMP之分子量;EA測PAMP之C、H、N、S含量比例。
    強塑劑對水泥漿與混凝土工作性之研究分別以PAMP單體比例、分子量、側鏈長度與側鏈結構為變因分別進行探討,以強塑劑對水泥漿體顆粒之吸附行為實驗來解釋之,並與商用之羧酸系HP-100及磺酸系HPC1000進行比較。研究結果顯示,PAMP在AMPSA/MAA/PM = 2/3/0.5的比例下,具有最佳之分散效果與坍度維持性,飽和劑量為0.5wt%;最適重量平均分子量為M(—)w=5.0~8.0×104;吸附實驗結果顯示當PAMP之初始吸附量少,達吸附平衡時間長,有最佳之漿體流動促進性;研究並證實PAMP藉由改質單體側鏈長度與結構的調整,有助於提升水泥漿體之坍度維持。

    Superplasticizers are key components to promote the workability of concrete. In this research, monomers(PM) with different side chain lengths and different reactant ratios were prepared from polyethylene glycol (PEG) and maleic anhydride (MA). A noval carboxylate-based superplasticiser PAMP with 2-acrylamido-2-methylpropane sulfonic acid (AMPSA), methacrylic acid (MAA), and the monomers aforementioned were prepared by free-radical polymerization using ammonium peroxodisulfate as the initiator and sodium methallylsulfonate as the chain transfer agent. The prepared monomers and PAMP have been confirmed by FT-IR、1H-NMR, and 13C-NMR;the molecular weight of PAMP was determined by the Gel Permeation Chromatography (GPC) and the composition of the polymer was determined by the Elemental Analysis (EA).
    The effects of the reactant ratio, molecular weight, and side chain lengths of PAMP on the cement paste and the workability concrete were investigated. The dispersion properties of PAMP fluidity were compared to those of the commercial superplasticisers, i.e., HP-100 (carboxylate-based) and HPC1000 (sulfonate-based). The test results indicate that the cement pastes containing PAMP with AMPSA / MAA / PM = 2 / 3 / 0.5 shows the highest initial spread diameter and the lowest slump loss; the saturation dosage was 0.5wt%, and the optimum-weight average molecular weight (M(—)w) are 5.0~8.0×104. It is indicated that when the amount of PAMP was less adsorbed initially and the equilibrium adsorption time was longer, then the resulting cement pastes show better fluidity. PAMP with proper side chain length will promote the slump-retention of the resulting cement pastes.

    第一章 緒論 第二章 文獻回顧 2.1 水泥 2.1.1 卜特蘭水泥之組成 2.1.2 卜特蘭水泥之水化反應 A. 水泥水化方程式 B. 水泥水化模式 2.1.3 混凝土 2.2 強塑劑(Superplasticizer) 2.2.1 添加強塑劑之目的 2.2.2 強塑劑之種類 2.2.3 強塑劑之各種基團對水泥水化反應之影響 2.2.4 強塑劑之分散機制 A. DLVO 理論 B. 電雙層理論 C. 離子濃度對膠體分散力之影響 D. 立體障礙機制 E. 輸氣與水披覆環繞機制 2.2.5 強塑劑之吸附行為 A. 吸附理論 B. Langmuir等溫吸附曲線 C. 吸附模式 D. 影響吸附之變因 E. 強塑劑與水泥漿體之吸附行為 F. 羧酸系聚合物相關文獻彙集 2.3 自由基聚合(Free-Radical Polymerization) 2.3.1 單聚合 2.3.2 鏈轉移聚合 2.3.3 共聚合 第三章 研究計畫與實驗方法 3.1 實驗流程 3.2 實驗方法 3.3 實驗變數 3.4 實驗材料 3.5 實驗儀器 3.6 實驗方法 3.6.1具單側鏈及羧基改質單體之合成 3.6.2具單側鏈共聚物之合成 3.6.3具雙側鏈改質單體之合成 3.6.4具雙側鏈共聚物之合成 3.6.5 粒徑分析 3.6.6 紅外線(IR)光譜分析 3.6.7 紫外線(UV)光譜分析 3.6.8 核磁共振(NMR)光譜分析 3.6.9 元素分析(EA) 3.6.10 凝膠滲透層析(GPC)分析 3.6.11 pH值測量 3.6.12 強塑劑固含量測量 3.6.13 強塑劑視黏度測量 3.6.14 水泥漿體拌製 3.6.15 水泥漿體擴散直徑與流動性維持測量 3.6.16 強塑劑於水泥漿體吸附量之測量 3.6.17 混凝土拌製 3.6.18 混凝土抗壓強度測試 第四章 結果與討論 4.1 材料基本性質分析 4.1.1 具單側鏈及羧基改質單體之基本性質 4.1.2具單側鏈共聚物之基本性質 4.1.3 具雙側鏈及羧基改質單體之基本性質 4.1.4具雙側鏈共聚物之基本性質 4.1.5 水泥之基本性質 4.2 強塑劑單體比例對水泥漿體流動性之影響 4.2.1 強塑劑單體比例對水泥漿體擴散直徑之影響 4.2.2 強塑劑單體比例對水泥漿體迷你坍度維持之影響 4.2.3 強塑劑單體比例對水泥漿體吸附行為之影響 4.3 強塑劑分子量對水泥漿體流動性之影響 4.3.1 強塑劑分子量對水泥漿體擴散直徑之影響 4.3.2 強塑劑分子量對水泥漿體吸附行為之影響 4.4 強塑劑側鏈長度/結構對水泥漿體流動性之影響 4.4.1 強塑劑側鏈長度/結構對水泥漿體擴散直徑之影響 4.4.2 強塑劑側鏈長度/結構對水泥漿迷你坍度維持之影響 4.4.3 強塑劑側鏈長度/結構對水泥漿體吸附行為之影響 4.5強塑劑對水泥漿流動性或混凝土工作性之影響 4.5.1各強塑劑於不同水灰比、不同廠牌水泥漿工作性比較 4.5.2 OT1405/OF1405/OF2305對水泥漿體吸附行為之比較 4.5.3 OT1405與OF2305對混凝土工作度之比較 第五章 結 論 第六章 建 議 第七章 參考資料

    Andersen, P. J., and Roy, D. M., “The effect of adsorption of superplasticizer on the surface of cement,” Cem. Concr. Res., 17, 805-813, (1987).
    Andersen, P. J., and Roy, D. M., “The effect of superplasticizer molecular weight on its adsorption on, and dispersion of, cement,” Cem. Concr. Res., 18, 980-986, (1988).
    Chandra, S., and Flodin, P., “Interactions of polymers and organic admixtures on Portland cement hydration,” Cem. Concr. Res., 17, 875-890, (1987).
    Chandra, S., and Bjrnstrm, J., “Influence of superplasticizer type and dosage on the slump loss of Portland cement mortars--Part II,” Cem. Concr. Res., 32, 1613-1619, (2002).
    Chen, K. M., and Tsai, C. C., “Synthesis and surface activity of maleic anhydride - polyethylene glycol - phthalic anhydride polymeric surfactants,” JAOCS, 65, [8], 1346-1349, (1988).
    Chun, B. W., “Paste fluidity of two-component cement dispersant formulation another additivity rule,” Cem. Concr. Res., 31, 959-963, (2001).
    Collepardi, M., “Superplasticizers and Air Entraining Agents : State of the Art and Future Needs In Concrete Technology : Past, Present, and Future,” ACI SP 144-20, Montreal, Canada, Editor: V. M. Malhotra, 399-416, (1994).
    Collepardi, M., “Admixtures used to enhance placing characteristics of concrete,” Cem. Concr. Composites, 20, 103-112, (1998).
    Cunningham, J. C., Dury, B. L., and Gregory, T., “Adsorption characteristics of sulphonated melamine formaldehyde condensates by high performance size exclusion chromatography,” Cem. Concr. Res., 19, 919-926, (1989).
    Davies, J., and Binner, J. G. P., “The role of ammonium polyacrylate in dispersing concentrated alumina suspensions,” J. Eur. Ceram. Soc., 20, 1539-1553, (2000).
    Erich, E. K., Leslie, A. W., and Charles, L. M., “Water-Soluble Copolymers 67. Polyelectrolytes of N-Vinylformamide with Sodium 3-Acrylamido-3-methylbutanoate, Sodium 2-Acrylamido-2-methylpropanesulfonate, and Sodium Acrylate:Synthesis and Characterization,” Macromolecules, 29, 5268-5272, (1996).
    Filippov, L. K., “Adsorption, desorption, and exchange kinetics of mixtures on planar surfaces,” J. Colloid Interface Sci., 181, 232-251, (1996).
    Flatt, R. J., and Houst, Y. F., “A simplified view on chemical effects perturbing the action of superplasticizers,” Cem. Concr. Res., 31, 1169-1176, (2001).
    Fukuda, M., Mizunuma, T., Izumi, T., Izuka, M., and Hisaka, M. M., “Slump Control and Properties of Concrete with a New Superplasticizer I : Laboratory Studies and Test Methods”, Proceedings of the Inter. RILEM Symposium on “Admixture for Concrete Improvement of Properties,” Barcelona, Spain, Editor: E. Vasque, 10-19, (1990).
    Golaszewski, J., and Szwabowski, J., “Influence of superplasticizers on rheological behavior of fresh cement mortars,” Cem. Concr. Res., 34, 235-248, (2004).
    Hackley, V. A., “Colloidal processing of silicon nitride with poly(acrylic acid) : Ⅰ, adsorption and electrostatic interactions,” J. Am. Ceram. Soc., 80, [9], 2315-2325, (1997).
    Hanehara, S., and Yamada, K., “Interaction between cement and chemical admixture from the point of cement hydration, adsorption behavior of admixture, and paste rheology,” Cem. Concr. Res., 29, 1159-1165, (1999).
    Helene, D., and Bengt, W., “Synthesis and characterization of anionic graft copolymers containing poly(ethylene oxide) grafts,” J. Polym. Sci., Polym, Chem., 33, 571-579, (1995).
    Hu, J. H., Wang, C. C., Yang, W. L., Fu, S. K., Chen, B. X., and Cheng, K. J., “Synthesis and mechanism of poly(carboxylate) high-range water reducing agent,” Journal of Fudan University(Natural Science), 39, [4], 463-466, (2000).
    Israelachvili, J. N., Intermolecular and surface forces, 2nd ed., Academic Press: London, (1991).
    Jolicoeur, C., and Simard, M. A., “Chemical admixture-cement interactions: phenomenology and physico-chemical concepts,” Cem. Concr. Composites, 20, 87-101, (1998).
    Kathmann, E. E., White, L. A., and McCormick, C. L., “Water-soluble copolymers 67. Polyelectrolytes of N-vinylformamide with sodium 3-acrylamido-3- methylbutanoate, sodium 2-acrylamido-2-methylpropanesulfonate, and sodium acrylate : synthesis and characterization,” Macromolecules, 29, 5268-5272. (1996).
    Kim, B. G.., Jiang, S., Jolicoeur, C., and Atcin, P. C., “The adsorption behavior of PNS superplasticizer and its relation to fluidity of cement paste,” Cem. Concr. Res., 30, 887-893, (2000).
    Kinoshita, M., Yuki, Y., Miura, Y., and Takahashi, T., “Synthesis of methacrylic water soluble polymer using sodium methallylsulfonate as molecular weight control agent – Porperties as cement dispersing agent,” Kobunshi Ronbunshu, 52, [1], 33-38, (1995).
    Kreppelt, F., Weibel, M., Zampini, D., and Romer, M., “Influence of solution chemistry on the hydration of polished clinker surfaces – a study of different types of polycarboxylic acid-based admixtures,” Cem. Concr. Res., 32, 187-198, (2002).
    Lewis, J. A., Matsuyama, H., Kirby, G.., Morissette, S., and Young, J. F., “Polyelectrolyte effects on the rheological properties of concentrated cement suspensions,” J. Am. Ceram. Soc., 83, [8], 1905-1913, (2000).
    Lim, G.. G.., Hong, S. S., Kim, D. S,. Lee, B. J., and Rho, J. S., “Slump loss control of cement paste by adding polycarboxylic type slump-releasing dispersant,” Cem. Concr. Res., 29, 223-229, (1999).
    Laidler, K. J. and Meiser, J. H. Physical chemistry, 2nd ed.; Boston : Houghton Mifflin, (1995).
    Malcolm, P. S., Polymer Chemistry, 2nd ed.; New York : Oxford University Press,
    (1990).
    Mitsui, K., Kasami., Yoshiota, Y., and Kinoshita, M., “Properties of High Strength Concrete with Silica Fume Using High Range Water Reducer of Slump Retaining Type,” ACI SP 119-4, Ottawa, Canada, Editor: V. M. Malhotra, 79-97, (1989).
    Mitsukami, Y., Donovan, M. S., Lowe, A. B., and McCormick, C. L., “Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT,” Macromolecules, 34, 2248-2256, (2001).
    Mitsuo, K., Yasuo, Y., Yoshimasa M., and Tomoo, T., “Synthesis of Methacrylic Water Soluble Polymer Using Sodium Methallylsulfonate as Molecular Weight Control Agent – Porperties as Cement Dispersing Agent,” Kobunshi Ronbunshu, 52, [1], 33-38, (1995).
    Morrison, I. D. and Ross, S., “Colloidal dispersions suspensions, emulsions, and foams,” New York : Wiley-Interscience, (2002).
    Moukwa, M., Youn, D., and Hassanali, M., “Effects of degree of polymerization of water soluble polymers on concrete properties,” Cem. Concr. Res., 23, 122-130, (1993).
    Moudgil, B.M., and Prakash, T. S., “Competitive adsorption of polymer and surfactants on soild substrates,” Colloids and Surfaces A, 133, 93-97, (1998).
    Nakajima, Y. and Yamada, K., “The effect of the kind of calcium sulfate in cements on the dispersing ability of poly β- naphthalene sulfonate condensate superplasticizer,” Cem. Concr. Res., 34, 839-844, (2004).
    Neubauer, C. M., Yang, M., and Jennings, H. M., “Interparticle potential and sedimentation behavior of cement suspensions : effects of admixtures,” Adv. Cem. Based Mater., 8, 17-27, (1998).
    Ohama, Y., “Polymer-based admixtures,” Cem. Concr. Composites, 20, 189-212, (1998).
    Pavia, D. L., Lampman, G. M., and Kriz, G. S., Introduction to spectroscopy, 2nd ed.; Philadelphia : W. B. Saunders Co., (1996).
    Pei, M., Wang, D., Hu, X., and Xu, D., “Synthesis of sodium sulfanilate phenol formaldehyde condensate and its application as a superplasticizer in concrtet,” Cem. Concr. Res., 30, 1841-1845, (2000).
    Tanaka, I., Suzuki, N., Ono, Y., and Koishi, M., “Fluidity of spherical cement and mechanism for creating high fluidity,” Cem. Concr. Res., 28, 63-74, (1998).
    Terrisse, H. V., Nonat, A., and Petit, J. C., “Zeta-potential study of calcium silicate hydrates interacting with alkaline cations,” Journal of Colloid and Interface Science, 244, 58–65 (2001).
    Uchikawa, H., Hanehara, S., and Sawaki, D., “The role of steric repulsive force in the dispersion of cement particles in fresh paste paste prepared with organic admixture,” Cem. Concr. Res., 27, 37-50, (1997).
    Uchikawa, H., Sawaki, D., and Hanehara, S., “Influence of kind and added timing organic admixture type and addition time on the composition structure, and property of fresh cement paste,” Cem. Concr. Res., 25, 353-364, (1995).
    Uchikawa, H., Uchida, S., Ogawa, K., and Hanehara, S., “Influence of CaSO4‧2H2O, CaSO4‧1/2H2O and CaSO4 on the initial hydration of clinker having different burning degree,” Cem. Concr. Res., 14, 645-656, (1984).
    Yamada, K., Takahashi, T., S. Hanehara, M. Matsuhisa, “Effects of the chemical structure on the properties of polycarboxylate type superplasticizer,” Cem. Concr. Res., 30, 197-203, (2000).
    Yamada, K., Ogawa, S., and Hanehara, S., “Controlling of the adsorption and dispersing force of polycarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase,” Cem. Concr. Res., 31, 375-383, (2001).
    Yamakawa, C., Kishtiani, K., Fukushi, I., and Kuroha, K., “Slump Control and Properties of Concrete with a New Superplasticizer II : High Strength in situ Concrete Wordk at Hikariga-Oka Housing Project,” Proceedings of the Inter. RILEM Symposium on “Admixture for Concrete Improvement of Properties”, Barcelona, Spain, Editor: E. Vasquez, 94-105, (1990).
    Yang, M., Neubauer, C. M., and Jennings, H. M., “Interparticle potential and sedimentation behavior of cement suspensions--review and results from paste,” Adv. Cem. Based Mater., 5, 1-7, (1997).
    Yoshioka, K., Tazawa, E., Kawai, K., and Enohata, T., “Adsorption characteristics of superplasticizers on cement component minerals,” Cem. Concr. Res., 32, 1507-1513, (2002).
    Yoshioka, K., Sakai, E., and Daimon, M., “Role of steric hindrance in the performance of superplasticizers for concrete,” J. Am. Ceram. Soc., 80, [10], 2667-2671, (1997).
    Yoshiro, M., Michael, S., Andrew, B. L., and Charles, L. M., “Water-Soluble Polymers. 81. Direct Synthesis of Hydrophilic Styrenic-Based Homopolymers and Block Copolymers in Aqueous Solution via RAFT,” Macromolecules, 34, 2248-2256, (2001).
    Yousuf, M., Mollah, A., Vempati, R.K., Lin, T. C., and Cocke, D. L., “The interfacial chemistry of solidification/stabilization of metals in cement and pozzolanic material systems,” Waste Management, 15, [2], 137-148, (1995).
    Zhang, T., Shang, S., Yin, F., Aishah, A., Salmiah, A., and Ooi, T. L., “Adsorptive behavior of surfactants on surface of Portland cement,” Cem. Concr. Res., 31, 1009-1015, (2001).
    卞榮兵和江國慶:新型高效保坍劑的合成與應用。化學建材,6,36-42,(1989)。
    王軍民、薛芳渝和劉雲編:物理化學。北京:清華大學出版社,1994。
    李麗偵:化學摻料分子在水泥表面吸附之行為分子動力模擬研究。國立台灣師範大學化學研究所碩士論文,1999。
    高文弘和周賢孟譯,Osipow, L. I.原著:界面化學。新竹:國興出版社,1983。
    郭文田:添加強塑劑對水泥材料水化及早期行為之影響。國立中央大學土木研究所博士論文,2000。
    郭義浩:強塑劑對混凝土質流行為之影響。國立中興大學土木工程研究所碩士論文,8-9頁,2001。
    陳慶宏:強塑劑於高效能混凝土中之效能評估。國立台灣師範大學化學研究所碩士論文,2000。
    黃兆龍:混凝土性質與行為。台北:詹氏書局,1997。
    黃兆龍:混凝土材料品質控制實驗。台北:詹氏書局,1999。
    黃宏隆:新型具羧酸系強塑劑對含飛灰水泥漿體流動行為之影響。國立台灣師範大學化學研究所碩士論文,2003。
    葉一賢:新型聚羧酸系強塑劑的合成與應用。國立台灣師範大學化學研究所碩士論文,2002。
    應國良:鈦酸鋇漿體分散劑的合成與應用。國立台灣師範大學化學研究所碩士論文,2003。
    蘇南:二十一世紀TACON之配比設計。高性能混凝土配比設計實做,1998。

    QR CODE