簡易檢索 / 詳目顯示

研究生: 許敬玄
Shiu, Jing-Shiuan
論文名稱: 氧化鋅奈米線陣列披覆PVDF製作可撓性壓電元件之輸出電壓特性研究
Piezoelectric output voltage properties of ZnO nanowire arrays coated PVDF with flexible application
指導教授: 程金保
Cheng, Chin-Pao
鄭淳護
Cheng, Chun-Hu
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 96
中文關鍵詞: 壓電感測器水熱法氧化鋅奈米線PVDF材料
英文關鍵詞: Piezoelectric sensor, Hydrothermal method, ZnO nanowires, PVDF
論文種類: 學術論文
相關次數: 點閱:89下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究先利用濺鍍機在可撓式銅基板上沉積一層氧化鋅種子層,再將沉積種子層過後的銅基板經過水熱法長出一維結構之氧化鋅奈米線,透過不同氧化鋅種子層的粗糙度改變氧化鋅奈米線之線徑與線長:氧化鋅種子層粗糙度低,奈米線長且細,但容易造成奈米線叢聚現象;氧化鋅種子層粗糙度高製備出奈米線線徑粗,因線徑粗使奈米線叢聚現象降低。因製備完成氧化鋅奈米線後,需將PVDF薄膜旋塗於氧化鋅奈米線上,若奈米線有叢聚現象,PVDF溶液較不易均勻沉浸於奈米線中。接下來探討PVDF在何種結晶的環境下和厚度,能有效的提高PVDF的壓電輸出特性,一般PVDF的熔點溫度在160℃。研究成果指出,PVDF薄膜在300 rpm的轉速有最大的壓電輸出,且在烘烤時間50分鐘也能有效的使壓電輸出達到最佳化。
    雖然氧化鋅奈米線本身也是壓電材料,但其壓電輸出特性卻非常小;而在PVDF薄膜上,雖材料本身耐強度與高壓電輸出特性,但其壓阻高所造成的靈敏性低之缺點,故在最後研究,將結合兩種材料以達到相輔相成的效用在,所以近一步探討PVDF薄膜在有無披覆氧化鋅奈米線時的壓電輸出特性的差異,結果顯示披覆氧化鋅奈米線時之壓電輸出特性增加、反應時間減少,都是因氧化鋅奈米線高體表面積的優點,使PVDF薄膜能突破本身低靈敏性的特性,能有潛力成為高敏性與高輸出之可撓式攜帶電子元件。

    Herein this study reports the preparation of ZnO nanowires by using the hydrothermal method. Different lengths and width of ZnO nanowires array can be obtained by changing the sputtering parameter. We can obtain the longer and thick of ZnO nanowires with low surface roughness, but this result may bundle the nanowires. So we increase the surface roughness to avoid bundling the nanowires. PVDF was dissolved in acetone. The solution was dropped onto the substrate containing the ZnO nanostructures. Following spin-coating at 300, 500, 700, and 1000 rpm for 60 s, the film was poled at 160℃ for 30, 40, and 50 min. We can get the best output piezoelectric property from PVDF at 300 rpm and 50 min. To compare the pressure and bending sensing properties of the PVDF and PVDF/ZnO composite film. As the result, the PVDF/ZnO nanowires composite film exhibited the greatest signal in response, especially for a micro-loading sensing. Because of the 1D vertically ZnO nanowires, they generate an enhanced piezoelectric response to increase the sensitivity and lower the contact resistance at PVDF/Cu interface. In order o increase the output piezoelectric property, we increase the sensing area. The dipole moment under different sensing area determines the proportionally increased output voltage.

    第一章 緒論 1 1.2研究動機與目的 6 第二章 文獻回顧 8 2.1壓力感測器研究近況 8 2.1.1壓阻式壓力感測器 8 2.1.2壓電式壓力感測器 9 2.1.3電容式壓力感測器 10 2.2壓電原理 12 2.2.1正壓電特性 12 2.2.2逆壓電特性 13 2.2.3壓電操作模式 14 2.2.4壓電作動方程式 16 2.3氧化鋅材料特性 19 2.4氧化鋅奈米線製備方法 22 2.4.1有機金屬化學氣相沉積 (Metal-Organic Chemical Vapor Deposition) 22 2.4.2電化學沉積法 (Electrodeposition, ED) 23 2.4.3氣-液-固體法 (VLS) 24 2.4.4射頻磁控濺鍍法 25 2.4.5脈衝雷射沉積 (Pulsed Laser Deposition) 26 2.4.6水熱法 (hydrothermal) 27 2.4.7 各製備方法之優缺點比較 31 2.5 PVDF薄膜特性介紹 32 2.5.1 PVDF壓電薄膜 32 2.5.2 PVDF材料的優點 34 2.5.3 氧化鋅奈米線披覆PVDF相關應用 37 第三章 實驗方法與步驟 38 3.1實驗規劃 38 3.2實驗用品及耗材 40 3.3試片準備 41 3.3.1準備與清洗材料 41 3.3.2沉積氧化鋅種子層 41 3.3.3水熱法成長氧化鋅奈米線 42 3.3.4奈米線表面形貌分析 42 3.3.5 PVDF的製作與披覆 43 3.4壓電特性量測 44 3.5使用儀器與設備 46 3.5.1濺鍍機 46 3.5.2旋轉塗佈機 47 3.5.3掃描式電子顯微鏡 47 3.5.4電荷放大器與微應力探針 48 3.5.5彎曲塊規 49 3.5.6傅利葉轉換紅外線光譜儀(Fourior Transform Infrared Spectrometer, FT-IR)分析 49 3.5.7 XRD(X-射線繞射分析) 49 3.5.8高解析場發射型掃描式電子顯微鏡(HR FE SEM S-4800) 50 3.5.9電性量測 50 第四章 結果與討論 51 4.1氧化鋅奈米線形貌與特性探討 51 4.1.1 不同氧化鋅種子層厚度對奈米線形貌的影響 51 4.1.2不同氧化鋅奈米線形貌之壓電輸出特性 56 4.2 PVDF薄膜特性分析 57 4.2.1 不同厚度和烘烤時間對PVDF薄膜的影響 57 4.2.2 PVDF結晶相於不同厚度與烘烤時間之特性分析 67 4.3 氧化鋅奈米線披覆PVDF薄膜輸出特性分析與探討 69 4.3.1 氧化鋅奈米線披覆PVDF薄膜之輸出特性 69 4.3.2 氧化鋅奈米線披覆PVDF結晶相之特性分析 74 4.3.3 感測時之反應時間 75 4.3.4 不同面積之輸出特性的探討 78 4.4電性分析 80

    [1] C. Mizelle, M. Rodgers, and L. Forrester, Bilateral foot center of pressure measures predict hemipa-retic gait velocity, Gait & Posture, 24, 356-363, (2006).
    [2] U. Waldecker, “Metatarsalgia in hallux valgus deformity: A pedographic analysis,” Foot & Ankle Surgery, 41, 5, 300-308, (2002).
    [3] D. J. Beebe, D. D. Denton, R.G. Radwin, and J. G.Webster, “A silicon-based tactile sensor for finger-mounted applications,” Biomedical Engineering, 45, 2, 151-159, (1998).
    [4] D. J. Beebe, D. D. Denton, R. G. Radwin, and J. G.Webster, “A finger-mounted silicon tactile sensor,” Biomedical Engineering, 2, 834-835, (1994).
    [5] R. A. Dickson, A. Petrie, F. V. Nicolle and J. S.Calnan, “A device for measuring the forces of the digits of the hand,” Biomedical Engineering, 7, 270-273, (1972).
    [6] C. Cristalli and M. R. Neuman, “A capacitivepressure sensor for measurement of interfacial pressure between a sphygmomanometer cuff and the arm,” Engineering in Medicine and Biology Society, 2, 1547-1542, (1995).
    [7] Y. Wang, C. Nguyen, R. Srikanchana, Z. Geng, and M. T. Freedman, “Tactile mapping of palpable abnormalities for breast cancer diagnosis,” Robotics and Automation, 2, 1305-1309, (1999).
    [8] K. G. Engelhardt, “Health and human service robotics,” Engineering in Medicine and Biology Society, 2082, (1987).
    [9] C. Liu, Foundations of MEMS, Pearson Education, (2006).
    [10] Z. Chu, P. M. Sarro, and S. Middelhoek, “Silicon three-axial tactile sensor,” Sensors and Actuators A: Physical, 54, 505-510, (1996).
    [11] B. J. Kane, M. R. Cutkosky, and G. T. A. Kovacs, “A traction stress sensor array for use in high-resolution robotic tactile imaging,” Journal of Microelectromechanical Systems, 9, 4, 425-434, (2000).
    [12] M. Ádám, T. Mohácsy, P. Jónás, C. Dücso, E. Vázsonyi, and I. Bársony, “CMOS integrated tactile sensor array by porous Si bulk micromachining,” Sensors and Actuators A: Physical, 142, 192-195, (2008).
    [13] H. B. Muhammad, C. M. Oddo, L. Beccai, C. Recchiuto, C. J. Anthony, M. J. Adams, M. C. Carrozza, D. W. L. Hukins, and M. C. L. Ward, “Development of a bioinspired MEMS based capacitive tactile sensor for a robotic finger,” Sensors and Actuators A: Physical, 165, 221-229, (2011).
    [14] C. Liu, Foundations of MEMS, Pearson Education, (2006).
    [15] R. E. Saad, Tactile sensing, CRC Press LLC, (1999).
    [16] C. F. Hu, H. Y. Huang, C. C. Wen, L. Y. Lin, and W. Fang, “Implementation of a flexible silicon-based tactile sensor array,” Proceedings of IEEE Sensors, 1736-1739, (2010).
    [17] J. Engel, J. Chen, Z. Fan, and C. Liu, “Polymer micromachined multimodal tactile sensors,” Sensors and Actuators A: Physical, 117, 50-61, (2005).
    [18] T. V. Papakostas, J. Lima, and M. Lowe, “A large area force sensor for smart skin applications,” Proceedings of IEEE Sensors, 1620-1624, (2002).
    [19] M. Y. Cheng, C. M. Tsao, Y. Z. Lai, and Y. J. Yang, “The development of a highly twistable tactile sensing array with stretchable helical electrodes,” Sensors and Actuators A: Physical, 166, 226-233, (2011).
    [20] E. S. Kolesar and C. S. Dyson, “Object imaging with a piezoelectric robotic tactile sensor,” Journal of Microelectromechanical Systems, 4, 2, 87-96, (1995).
    [21] C. Li, P. M. Wu, S. Lee, A. Gorton, M. J. Schulz, and C. H. Ahn, “Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer,” Journal of Microelectromechanical Systems, 17, 2, 334-341, (2008).
    [22] H. K. Lee, S. I. Chang, and E. Yoon, “A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment,” Journal of Microelectromechanical Systems, 15, 6, 1681-1686, (2006).
    [23] H. K. Kim, S. Lee, and K. S. Yun, “Capacitive tactile sensor array for touch screen application,” Sensors and Actuators A: Physical, 165, 2-7, (2011).
    [24] R. Ristic, B. Benhabib, and A. A. Goldenberg, “Analysis and design of a modular electrooptical tactile sensor,” IEEE Transactions on Robotics Automation, 5, 3, 362-368, (1989).
    [25] J. S. Heo, J. H. Chung, and J. J. Lee, “Tactile sensor arrays using fiber Bragg grating sensors,” Sensors and Actuators A: Physical, 126, 312-327, (2006).
    [26] Kun-Fei Lee, and Kin Fong Lei, “A Review on Tactile Sensors for Biomechanical Applications,” Journal of Advanced Engineering, 7, 4, 151-159, (2012).
    [27] http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?Cnlid=13&id=0000201937_O95LIL962HI1DO8YX7UNM&ct=1.
    [28] Y.-C. Liu, C.-M. Sun, L.-Y. Lin, M.-H. Tsai, and W. Fang, Transducers’09, Denver, CO, June 21-25, 2190, (2009) .
    [29] W. L. Fang, C. M. Sun, M. H. Tsai, and Y. C. Liu, “Sensors Integration Using CMOS MEMS Platform,” Instruments Today, 31, 2, 18-25, (2009).
    [30] http://www.pme.nthu.edu.tw/lab/lab/lab_main/form_main_single/968/1151
    [31] Z. L. Wang, Piezoelectric nanostructures: from growth phenomena to electric nanogenerators. Mater. Res. Soc. Bull, 32, 109-116, (2007).
    [32] Y. Zhang, X. Yan, Y. Yang, Y. Huang, Q. Liao, J. Qi, “Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices,” Advanced Materials, 24, 4647-4655, (2012).
    [33] Małgorzata Dziubaniuka, Renata Bujakiewicz-Koronska, Jan Suchanicz, Jan Wyrwaa, Mieczysław Rekas, “Application of bismuth ferrite protonic conductor for ammonia gas detection,” Sensors and Actuators B: Chemical, 188, 957-964, (2013).
    [34] A.S. Poghossian, H.V. Abovian, P.B. Avakian, S.H. Mkrtchian, V.M. Haroutunian, Bismuth ferrites: new materials for semiconductor gas sensors, Sens. Actuators B, 4, 545–549, (1991).
    [35] S Murakami, T Yoshimura, K Satoh, K Wakazono, K Kariya, and N Fujimura, “Development of Piezoelectric MEMS Vibration Energy Harvester Using (100) Oriented BiFeO3 Ferroelectric Film,” Journal of Physics, 476, 012007, (2013).
    [36] H. Lu, C. W. Bark, D. Esque de los Ojos, J. Alcala, C. B. Eom, G. Catalan, and A. Gruverman, “Mechanical Writing of Ferroelectric Polarization,” Published in Science, 336, 6077, 59–61, (2012).
    [37] C. S. Smith, “Piezoresistance effect in germanium and silicon,” Phys. Rev, Vol. 94, pp. 42-49, (1954).
    [38] 袁希光,「感測器技術手冊」,國防工業出版社,北京, (1986)。
    [39] http://www.twwiki.com/wiki/%E5%A3%93%E9%98%BB%E5%BC%8F%E6%84%9F%E6%B8%AC%E5%99%A8
    [40] C. Ravariu, F. Ravariu, D. Dobrescu, L. Dobrescu, C. Codreanu, and M. Avram,“A designing roule for a pressure sensor with PZT layer,” Semiconductor Conference, 2, 379-382, (2001).。
    [41] S.K. Clark and K.D. Wise, “Pressure sensitivity in anisotropically etched thin-diaphragm pressure sensors,” IEEE Transactions on Electron Devices, Vol. ED-26, pp. 1887-1896, (1979)
    [42] W.P. Eaton and J.H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Master., Struct. 6, 530-539, (1997).
    [43] http://www.twwiki.com/wiki/%E9%9B%BB%E5%AE%B9%E5%BC%8F%E5%A3%93%E5%8A%9B%E6%84%9F%E6%B8%AC%E5%99%A8
    [44] D. Vatansever, E. Siores and T. Shah, Alternative Resources for Renewable Energy: Piezoelectric and Photovoltaic Smart Structures, GLOBAL WARMING IMPACTS AND FUTURE PERSPECTIVE, chapter 10, 263-290, (2012)
    [45] 吳朗,「電子陶瓷-壓電」,全欣資訊圖書,(1994)
    [46] http://piceramic.com/piezo-technology/properties-piezo-actuators/displacement-modes.html
    [47] https://zh.wikipedia.org/wiki/%E6%B0%A7%E5%8C%96%E9%8B%85
    [48] G. W. She, X. H. Zhang, W. S. Shi, X. Fan, C. Chang, C. S. Lee, S. T. Lee, C. H. Liu, “Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates,” Applied Physics Letters, 92, 5, 053111, (2008).
    [49] Quanchang Li, Vageesh Kumar, Yan Li, Haitao Zhang, Tobin J. Marks, and Robert P. H. Chang, “Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions,” Chem. Mater, 17, 5, 1001–1006, (2005).
    [50] F. Liu, P.J. Cao, H.R. Zhang, C.M. Shen, Z. Wang, J.Q. Li, H.J. Gao, “Well-aligned zinc oxide nanorods and nanowires prepared without catalyst,” Journal of Crystal Growth, 274, 126-131, (2005).
    [51] Y. S. Zhang, K. Yu, S. X. Ouyang, and Z. I. Zhu, “Selective-area growth and field emission properties of Zinc oxide nanowire micropattern arrays,” Physica B: Condensed Matter, 382, 76-80, (2006).
    [52] Y. Huang, K. Yu, Z. I. Zhu, “Synthesis and field emission of patterned ZnO nanorods,” Current Applied Physics, 7, 702-706, (2007).
    [53] Debao Wang, and Caixia Song, “Controllable Synthesis of ZnO Nanorod and Prism Arrays in a Large Area,” J. Phys. Chem., 109, 12697–12700, (2005).
    [54] K. S. Kim, and H. W. Kim, “Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition,” Physica B: Condensed Matter, 328, 368-371, (2003).
    [55] M. Guo, C. Y. Yang, M. Zhang, Y. J. Zhang, T. Ma, X. D. Wang, X. D. Wang, “Effects of preparing conditions on the electrodeposition of well-aligned ZnO nanorod arrays,” Electrochimica Acta, 53, 4633-4641, (2008).
    [56] H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, M.Meyyappan, “Growth of Epitaxial Nanowires at the Junctions of Nanowalls,” Science, 300, 1249, (2003).
    [57] H. Huang, Y. Y. Wu, H. N. Feick, Ngan Tran, Eicke Weber, and Peidong Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Advanced Materials, 13, 113-116, (2001).
    [58] Y. S. Chang, J. M. Ting, “Growth of ZnO Thin Films and Whiskers,” Thin Solid Films, 398-399, 29-34, (2001).
    [59] https://www.egr.msu.edu/eceshop/testingfacility/laser/
    [60] M. Yan, H. T. Zhang, E. J. Widjaja and R. P. H. Chang, “Self-assembly of well-aligned gallium-doped zinc oxide nanorods,” J. Appl. Phys, 94, 5240-5246, (2003).
    [61] E.D. Kolb, A.S. Coriell, R.A. Laudise, A.R. Hutson, “The hydrothermal growth of low carrier concentration ZnO at high water and hydrogen pressures,” Materials Research Bulletin, 2, 1099-1106, (1967).
    [62] Y.C. Kong, D.P. Yu and B. Zhang, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Applied physics, 78, 4, (2001).
    [63] G. Cao, “Nanostructures and nanomaterials: synthesis, properties, and
    application”, Imperial College Press, 1, (2004).
    [64] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals,” Journal of Crystal Growth, 203, 186−196, (1999).
    [65] A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, “Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine,” Journal of Sol-gel Science and Technology, 39, 49−56, (2006).
    [66] R. Gregorio Jr., M. Cestari and F.E. Bernardino, “Dielectric behaviour of thin films of β -PVDF/PZT and β -PVDF/BaTiO3 composites,” Journal of Materials Science, 31, 2925- 2930, (1996).
    [67] R. W. Whatmore, “Pyroelectric devices and materials,” Rep. Prog. Phys., 49, 1356-1359, (1986).
    [68] R. Gregorio and M. Cestari, “Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride),” Journal of Polymer Science:Part B:Polymer Physics, 32, 859-870, (1994).
    [69] K. Tashiro, M. Kobayashi, H. Tadokoro and E. Fukada, “Calculation of elastic and piezoelectric constants of polymer crystals by a point charge model:application to poly(vinylidene fluoride) fromⅠ,” macromolecules, 13, 691-698, (1980).
    [70] G. T. Davis, J. E. Mckinney, M. G. Broadhurst and S. C. Roth, “Electric- ield-induced phase changes in poly(vinylidene fluoride),” J. Appl. Phys., 49, 4998-5002, (1978).
    [71] Y. Takahashi and H. Tadokoro,“Crystal structure of form Ⅲof poly(vinylidene fluoride),” Macromolecule, 13, 1317-1318, (1980).
    [72] http://www.imagesco.com/articles/piezo/piezo03.html.
    [73] http://www.plasticseurope.org/what-is-plastic/types-of-plastics-11148/engineering-plastics/pvdf.aspx
    [74] S. Lee, K. Y. Shin, O. J. Cheong, J. H. Kim, and Jyongsik Jang, “Highly Sensitive and Multifunctional Tactile Sensor Using Free-standing ZnO/PVDF Thin Film with Graphene Electrodes for Pressure and Temperature Monitoring,” Scientific Report, 5, 7887, 1-8, (2015).

    下載圖示
    QR CODE