簡易檢索 / 詳目顯示

研究生: 李文卿
Wen-Ching Lee
論文名稱: 雙向光頻域反射與穿透技術之研究
Study of Two-Way Optical Frequency Domain Reflection/Transmission Technique
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 116
中文關鍵詞: 光學能隙共平面波導微波分頻多工器光電探頭光纖布拉格光柵啁啾光纖布拉格光柵
英文關鍵詞: photonic bandgap, coplanar waveguide, microwave frequency division multiplexer, electrooptic probe, fiber Bragg grating, chirped fiber Bragg grating
論文種類: 學術論文
相關次數: 點閱:303下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一雙向光頻域反射與穿透系統。此系統是由微波網路分析儀與我們所設計的光電探頭所組成。與傳統光網路分析儀相比,此光頻域反射與穿透系統可以對光待測物做快速雙向之S參數量測。我們分別運用光纖布拉格光柵與啁啾光纖布拉格光柵作為傳統光網路分析儀與我們所提出的光頻域反射與穿透系統之待測物。在此雙向光頻域反射與穿透系統的量測過程中,我們能同步地取得此兩種光纖布拉格光柵之頻率響應,而避免了傳統光網路分析儀因更換待測物量測方向時所造成的人為錯誤。

    In this thesis, we propose a two-way optical frequency domain reflection/transmission system. This system is combined by a microwave network analyzer and two electrooptic probes that we designed. Comparing to a conventional optical network analyzer, the optical frequency domain reflection/transmission system can measure the S parameters of optical device under test (DUT) by quick two-way measurement. We apply fiber Bragg grating (FBG) and chirped fiber Bragg grating (CFBG) as the optical DUTs of a conventional optical network analyzer and proposed two-way optical frequency domain reflection/transmission system. During the measurement procedure, we can make the two-way frequency responses of these two types of FBG synchronous in operation by the two-way optical frequency domain reflection/transmission system. It can avoid the human error induced by putting the DUT into opposite measurement direction in a conventional optical network analyzer.

    Contents Chinese Abstract………………………………………………...i English Abstract………………………………………………..ii Acknowledgment……………………………………………….iii Contents………………………………………………………...iv List of Figures…………………………………………………vii List of Tables…………………………………………………...xiii Chapter 1 Introduction……………………..……………………..……1 Chapter 2 A Novel Combination of PBG Cell for Achieving CPW Frequency Division Multiplexer……..………...5 2-1 Introduction…………..………………….…………………..……..…...6 2-2 Concepts and Theoretical Models…………………………………...…..7 2-2-1 Network Analysis…………………………………………...…….7 2-2-1-1 Two-port network…….……………………………..…..8 2-2-1-2 Four-port Network……………………………….…….10 2-2-2 Equivalent Capacitances and Inductances…………………..…..11 2-2-2-1 Interdigital Capacitance……………..……………..…..11 2-2-2-2 Gap Capacitance…………………………………….…11 2-2-2-3 Series and Shunt Inductance…………………………...13 2-2-2-4 Short-circuit Inductance…………………………….…13 2-2-3 Equivalent Circuit Model……………………………….……….14 2-2-3-1 S-parameter for Equivalent Circuit of PBG-CPW FDM…………………………………………………..14 2-2-4 Implementation of FDM……………………………...…………22 2-3 Simulation and Measurement Results ……….……….……………….24 2-4 Summary…………………………………………….…………………25 Chapter 3 Implementation of Two-Way Electrooptic Probe….47 3-1 Design of Two-Way Electrooptic Probe………………………………..48 3-2 Microwave Frequency Division Multiplexer…………………………..49 3-3 Microwave Circulator……………………………………………….…50 3-3-1 Theoretical Model…………….………...……………………….50 3-3-2 Experimental Results……………..…..…………………………55 3-4 Experimental Result of Electrical Probe……………………………….56 3-5 Optical Transmitter, Optical Circulator and Optical Receiver…………57 3-6 Experimental Result of Electrooptic Probe……………………………58 3-7 Summary……………………………………………………………….59 Chapter 4 Application of Two-Way Optical Frequency Domain Reflection/Transmission Technique….….…………...76 4-1 System Description.…………..……..…………………………...…….77 4-2 Calibration of Two-way Optical Frequency Domain Reflection/ Transmission System……………………………………….…………80 4-3 Fiber Bragg Grating (FBG)……………..……………………………...86 4-4 Chirped Fiber Bragg Grating (CFBG)……………....…………………88 4-5 Summary………………………….……………………….………...…89 Chapter 5 Conclusions……...……………………………..…………107 References……………………………………………...…………..…...109 Publication Lists…………………………………………….………xiv

    [1] P. T. Kulkarni, R. Gangopadhyay, and D. Datta, “Impact of link failures on the performance of multihop lightwave networks,” Computer Communications, Volume 21, No. 2, pp. 179-185, 1 March 1998.
    [2] J. J. Pan, “Microwave optics for space and ground communications,” Commercial Applications and Dual-Use Technology, pp.1 – 6, 16-17 June 1993.
    [3] D. D. Curtis and E. E. Ames, “Optical Test Set for Microwave Fiber-Optic Network Analysis,” IEEE Transactions on Microwave Theory and Techniques, Volume 38, No. 5, pp. 552-559, 1990.
    [4] J. A. C. Bingham, “Multicarrier modulation for data transmission: an idea whose time has come,” IEEE Communication Magazine, pp. 5–14, 1990.
    [5] Y. Q. Fu, G. H. Zhang, and N. C. Yuan, “A Novel PBG Coplanar Waveguide,” IEEE Microwave and Wireless Components Letters, Volume 11, No. 11, pp. 447 – 449, Nov. 2001.
    [6] Y. S. Lin, W. C. Ku, C. H. Wang, and C. H. Chen, “Wideband coplanar-waveguide bandpass filters with good stopband rejection,” IEEE Microwave and Wireless Components Letters, Volume 14, No 9, pp. 422 – 424, Sept. 2004.
    [7] F. Falcone, F. Martin, J. Bonache, T. Lopetegi, M. A. G. Laso, and M. Sorolla, “PBG resonator in coplanar waveguide technology,” Infrared and Millimeter Waves, pp. 355 – 356, 22-26 Sept. 2002.
    [8] B. M. Karyamapudi, and J. S. Hong, “Coplanar waveguide periodic structures with resonant elements and their application in microwave filters,” IEEE Transactions on Microwave Theory and Techniques, Volume 3, pp. 1619 – 1622, 8-13 June 2003.
    [9] F. Martin, F. Falcone, J. Bonache, T. Lopetegi, M. A. G. Laso, and M. Sorolla, “New periodic-loaded electromagnetic bandgap coplanar waveguide with complete spurious passband suppression,” IEEE Microwave and Wireless Components Letter, Volume 12, No. 11, pp. 435 – 437, Nov. 2002.
    [10] S. J. Kim and N. H. Myung, “An inversely tapered corrugated CPW,” 33rd European Microwave Conference, Volume 1, pp. 239 – 240, 7-9 Oct. 2003.
    [11] F. R. Yang, K. P. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit ,” IEEE Transactions on Microwave Theory and Techniques, Volume 47, No. 8, pp. 1509 – 1514, Aug. 1999.
    [12] J. Sor, Y. Qian, and T. Itoh, “Miniature low-loss CPW periodic structures for filter applications,” IEEE Transactions on Microwave Theory and Techniques, Volume 49, No. 12, pp. 2336 – 2341, Dec. 2001.
    [13] L. C. Kretly, L. C. Marangoni, and A. T. A. Silva, “Photonic band gap metallic 2D matrix applied to microstrip CPW lines to operate at Ka band,” Proceedings of the 2003 SBMO/IEEE MTT-S International, Microwave and Optoelectronics Conference, Volume 1, pp. 211 – 214, 20-23 Sept. 2003.
    [14] K. Hettak, N. Dib, A. Omar, G. Y. Delisle, M. Stubbs, and S. Toutain, “A useful new class of miniature CPW shunt stubs and its impact on millimeter-wave integrated circuits,” IEEE Transactions on Microwave Theory and Techniques, Volume 47, No. 12, pp. 2340 – 2349, Dec. 1999.
    [15] J. Garcia, F. Martin, F. Falcone, J. Bonache, J. D. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. MarcoteguiIturmendi, M. Sorolla, and R. Marques, “Microwave Filters With Improved Stopband Based on Sub-Wavelength Resonators,” IEEE Transactions on Microwave Theory and Techniques, Volume 53, No. 6, pp. 1997 – 2006, June 2005.
    [16] S. L. Tsao and T. C. Liou, “Design and implementation of a wideband microwave matching circuit of circulator for communications,” Proceedings of The 2nd (1999) Radio Science Symposium, pp. 71-76, 20-21 Dec. 1999.
    [17] V. Neubauer, M. Mayer, and G. Magerl, “A Novel Low loss Microwave Multiplexer Design Based on Directional Filter,” IEEE, Radio and Wireless Conference, pp. 257 – 260, 11-14 Aug. 2002.
    [18] S. L. Tsao and T. C. Liou, “A new two-way opto-electronic probe of optical component analyzers,” Proceeding of the Eighth National Conference on Science and Technology of National Defence, pp. 1-8, 20 Nov. 1999.
    [19] S. Li and K. T. Chan, “Electrical Wavelength-Tunable Actively Mode-Locked Fiber Ring Laser with a Linearly Chirped Fiber Bragg Grating,” IEEE Photonics Technology Letters, Volume 10, No. 6, pp 799-801, June 1998.
    [20] G. Yu, W. Zhang, and J. A. R. Williams, “High-Performance Microwave Transversal Filter Using Fiber Bragg Grating Arrays,” IEEE Photonics Technology Letters, Volume 12, No. 9, pp 1183-1185, Sep. 2000.
    [21] T. Suhara, H. Nishihara, and J. Koyama, “A Folded-Type Integrated-Optic Spectrum Analyzer Using Butt-Coupled Chirped Grating Lenses,” IEEE Journal of Quantum Electronics, Volume QE-18, No. 7, pp1057-1059, July 1982.
    [22] A. S. Kurkov, O. Rigal, D. Ramecourt, M. Douay, G. Martinelli, P. Niay, P. Bernage, A. Guryanov, D. Gusovskii, S. Kobis, and Yu. Zverev, “Application of π/2 phase shifted Bragg grating for the longitudinal mode selection of single-frequency fibre lasers,” Integrated Optics and Optical Fibre Communications, Volume 4, pp. 49 – 52, 22-25 Sept. 1997.
    [23] Y. Shen, Z. Xianmin, and C. Kangsheng, “All-optical generation of microwave and Millimeter wave using a two-frequency Bragg grating-based Brillouin fiber laser,” IEEE Journal of Lightwave Technology, Volume 23, No. 5, pp. 1860 – 1865, May 2005.
    [24] W. R. Peng, P. C. Peng, W. P. Lin, K. C. Hsu, Y. C. Lai, and S. Chi, “A cost-effective fast frequency-hopped code-division multiple-access light source using self-seeded fabry-Pe/spl acute/rot laser with fiber Bragg grating array,” IEEE Photonics Technology Letters, Volume 16, No. 11, pp. 2550 – 2552, Nov. 2004.
    [25] A. Molony, L. Zhang, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg grating true time delay systems discrete-grating array 3-b delay lines and chirped grating 6 b delay lines,” IEEE Transactions on Microwave Theory and Techniques, Volume 45, No. 8, August 1997.
    [26] Y. Qian, and T. Itoh, “Planar periodic structures for microwave and millimeter wave circuit applications,” IEEE Transactions on Microwave Theory and Techniques, Microwave Symposium Digest, Volume 4, pp. 1533 – 1536, 13-19 June 1999.
    [27] A. S. Andrenko, Y. Ikeda, K. Mori, and O. Ishida, “EM analysis of PBG substrate microstrip circuits for integrated transmitter front end,” MMET, Mathematical Methods in Electromagnetic Theory, Volume 1, pp. 295 – 297, 12-15 Sept. 2000.
    [28] C. P. Wen, “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device application,” IEEE Transactions on Microwave Theory and Techniques, Volume 17, pp. 1087-1090, December 1969.
    [29] J. S. Bae, T. S. Yun, K. B. Kim, J. H. Kim, S. K. Kang, J. C. Lee, B. Lee, and N. Y. Kim, “Equivalent circuit model and its application for slit discontinuity in CPW structure,” Microwave Conference, pp. 1302 – 1305, 3-6 Dec. 2000.
    [30] E. P. de Assunqiio, L. R. A. X. de Menezes, and Jr. H. Abdalla, “Microwave multiplexers using complementary triplexer filters,” SBMODEEE MTT-S IMOC'99 Proceedings, pp. 169-173.
    [31] Q. Xue, K. M. Shum, and C. H. Chan, “Novel 1-D Microstrip PBG Cells,” IEEE Microwave and Guided Wave Letters, Volume 10, No. 10, pp. 403-405, 2000.
    [32] J. S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications, John Wiley & Sons, Inc., 2001.
    [33] G. D. Alley, “Interdigital capacitors and their application to lumped-element microwave integrated circuits,” IEEE Transactions on Microwave Theory and Techniques, pp. 1028-1033, Dec. 1970.
    [34] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartis, Microstrip Lines and Solites, Second Edition, Artech House, Boston, 1996.
    [35] J. S. Bae, T. S. Yun, K. B. Kim, J. H. Kim, S. K. Kang, J. C. Lee, J. H. Kim, B. Lee, and N. Y. Kim, “Equivalent circuit model and its application for slit discontinuity in CPW structure,” Asia-Pacific Microwave Conference Proceedings, pp. 1302-1305, Dec. 2000.
    [36] J. S. Lim, C. S. Kim, Y. T. Lee, D. Ahn, and S. Nam, “A spiral-shaped defected ground structure for coplanar waveguide,” IEEE Microwave and Wireless Components Letters, Volume 12, No. 9, pp. 330 – 332, Sep. 2002.
    [37] J. K. A. Everard, and K. K. M. Cheng, “High Performance Direct Coupled Bandpass Filters on Coplanar Waveguide,” IEEE Transactions on Microwave Theory and Techniques, Volume 41, No. 9, September 1993.
    [38] D. Fisher and I. Bahl, Gallium Arsenide IC Applications Handbook.
    San Diego, CA: Academic, 1995.
    [39] X. Yanzhao, J. Jie, S. Beiyun, W. Qunshu, and W. Zanji, “Development of A Small Passive Electro-optic EMP Sensor,” Asia-Pacific Conference on Envimnmental Electromagnetics CEEM' 2003, Nov. 47, 2003.
    [40] J. D. Cox, and L. C. Blank, “Optical time domain reflectometry on optical amplifier systems and its application to future optical transmission systems and networks,” IEE Colloquium, Optical Amplifiers for Communications, pp. 7/1 - 7/4, 27 Oct 1989.
    [41] G. J. Pondock, M. J. L. Cahill, and Sampson, “Multi-gigabit per second demonstration of photonic code-division multiplexing,” Electronics Letters, Volume 31, No. 10, pp. 819-820, 1995.
    [42] M. Nakazawa, K. Suzuki, and Y. Kimura, “3.2-5 Gbps 100km error-free soliton transmission with erbium amplifiers and repenters,” IEEE Photonics Technique Letter, Volume 2, pp. 216-219, 1990.
    [43] H. Izadpanch, D. Chen, C. Lin, M. A. Saifi, I. Way, A. Yiyan, and J. L. Gimlett, “Distortion- free amplification of high-speed test pattems up to 100 Gbps with erbium-droped fiber amplifiers,” Electronics Letters, Volume 27, No. 3, pp. 196-198, 1991.
    [44] S. Pollitt, “Standards to support lightwave communications,” Precision Electromagnetic Measurements, pp. 495, 1994.
    [45] A. P. Freundorfer, “A coherent optical network analyzer,” IEEE Photonics Technology Letters, Volume 3, No. 12, pp. 1139 – 1142, Dec. 1991.
    [46] David M. Pozar, “Microwave Engineering 2nd edition,” Chapter 4, 1998.
    [47] B. Elamarn, R. D. Pollard, and S. Iezekiel, “Optical-Domain Implementation of the Microwave Txy Family of Calibration Technique”, IEEE Transactions on Microwave Theory and Techniques, Volume 47, No. 7, pp. 1373-1380, 1999.
    [48] T. E. Hodgetts, “A New Approach To “TRL” Calibration For Dual Six-Ports And Network Analysers,” Precision Electromagnetic Measurements, pp. 53-54, 1990.
    [49] G. F. Engen and C. A. Hoer, “Thru-reflect-Line: an improved technique for calibrating the dual six-port automatic network analyzer,” IEEE Transactions on Microwave Theory and Techniques, Volume 27, pp. 987-993, 1979.
    [50] Agilent 8703B Lightwave Component Analyzer User’s Guide.
    [51] T.C. Liou, and S. L. Tsao, “Study of A New Two-Way Measurement Method of Optical Signal Processing Elements,” Proceeding of Optics and photonics Taiwan’99 (OPT’99), pp. 1243-1246, 16-17 Dec. 1999.
    [52] J. Mora, B. Ortega, M. V. Andres, J. Capmany, D. Pastor, J. L. Cruz, and S. Sales, “Dynamic optical transversal filters based on a tunable dispersion fiber Bragg grating,” International Topical Meeting on Microwave Photonics, pp. 203 – 206, 7-9 Jan. 2002.
    [53] J. Marti, V. Polo, F. Ramos and D. Moodie, “Photonic tunable microwave filters employing electroabsorption modulators and wideband chirped fibre gratings,” IEE Electronics Letters, Volume 35, No. 4, pp. 305-306, February 1999.

    QR CODE