研究生: |
汪威霆 Wei-Ting Wang |
---|---|
論文名稱: |
高空平台應用於第三代行動電話系統中上鏈容量之研究 Analysis of the Uplink Capacity for Using HAPS in 3G Mobile Communication |
指導教授: |
黃政吉
Huang, Jeng-Ji |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 高空平台 、容量 、干擾 |
英文關鍵詞: | HAPS, capacity, interference |
論文種類: | 學術論文 |
相關次數: | 點閱:167 下載:27 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高空平台(high altitude platform stations,HAPS)系統的出現,提供了一個除了地面基地台(base station,BS)與衛星(satellite)以外通訊平台的新選擇,高空平台結合了地面通訊和衛星通訊兩者之優點,擁有良好的通道特性,例如:直視波(line-of-sight)存在、多重路徑的延遲變動較小。隨著此系統之發展,將深深地影響和改變目前通信網路結構的設計。
由於現今地面3G 行動電話系統已被廣泛建置,因此我們希望能整合現有通訊系統與高空平台系統,提供一個更理想之整合型系統。
因此,本論文首先是探討空中平台與地面基地台整合型分碼多重存取(code division multiple access,CDMA)系統之上鏈(uplink)傳輸效能,其中系統是採共用頻段組態。對於整合型系統傳輸效能,我們分別提出三種整合型之系統模型,以提升整體系統容量(capacity)或提供偏遠區域服務。接著,在本論文第二部份,有鑑於高空平台穩定度不如地面基地台,所以本論文將討論高空平台系統穩定性之問題,針對高空平台受風力而造成偏移對系統容量之影響,並提出雙平台系統以降低此影響。本論文採用數值分析軟體MATLAB並利用數學模型去分析整合型系統之容量,其分析結果可為未來規劃高空平台系統之重要依據。
High altitude platform stations (HAPS) is a new means of providing Third Generation (3G) mobile services. It combines advantages of terrestrial and satellite systems such as line-of-sight, low multi-path fading and no shadowing for high elevation angles. It will change the design of communication network by the developing of the HAPS.
Terrestrial mobile system has constructed throughout. We want to combine the existing terrestrial cellular systems and HAPS system to provide an ideal integrated system.
First of all, we consider the uplink capacity for integrated HAPS-terrestrial code division multiple access (CDMA) system in which sharing band overlay. In this integrated system, we propose three integrated system models respectively to increase the system capacity and to serve remote area. Second, Previous studies have shown that platform instability caused by stratospheric winds may lead to system level performance degradation. We discuss instability of HAPS system, and we propose to combat this problem by using multiple HAPSs to provide diversity of signal reception.
[1] T. C. Tozer and D. Grace, “High-altitude platforms for wireless communications,” Electronics & Communication Engineering Journal , vol. 13, no. 3, June 2001, pp. 127-137.
[2] P. Pace, G. Aloi, F. De Rango, E. Natalizio, A. Molinaro, and S. Marano, “An integrated Satellite-HAP-Terrestrial system architecture: resources allocation and traffic management issues,” IEEE 59th Vehicular Technology Conference, vol. 5, 17-19 May 2004, pp. 2872-2875.
[3] M .Oodo, H. Tsuji, R. Miura, M. Maruyama, and M, Suzuki, “Experiment of IMT-2000 Using Stratospheric-Flying Solar-Powered Airplane,” IEEE GLOBECOM’03, vol. 2, 1-5 Dec. 2003, pp. 1152-1156.
[4] Y. C. Foo, W. L. Lim, R. Tafazolli, and L. Barclay, “Other-cell interference and reverse link capacity of high altitude platform station CDMA system,” Electron. Lett., vol. 36, no. 22, Oct. 26, 2000, pp. 1881-1882.
[5] T.-C. Hong, B.-J. Ku, J.-M. Park, and D.-S. Ahn, “Reverse Link Capacity of the WCDMA System Using High Altitude Platform Stations,” IEEE WCNC 2005, vol. 1, 13-17 Mar. 2005, pp. 195-200.
[6] J. Thornton, D. Grace, M. H. Capstick, and T. C. Tozer, “ Optimizing an Array of Antennas for Cellular Coverage From a High Altitude Platform,” IEEE Trans. on Wireless Communications, vol. 2, no. 3, May 2003, pp. 484-492.
[7] Y. C. Foo, W. L. Lim, R. Tafazolli, and L. Barclay, “Forward Link Power Control for High Altitude Platform Station W-CDMA System,” IEEE 54th Vehicular Technology Conference, vol. 2, 7-11 Oct. 2001, pp. 625-629.
[8] B. T. Ahmed, M. C. Ramon, and Ld. H. Ariet, “Quasi-Optimum Downlink Power Control of High Altitude Platform W-CDMA System,” IEEE 57th Vehicular Technology Conference, vol. 4, 22-25 Apr. 2003, pp. 2476-2479.
[9] E. Falletti, M. Laddomada, M. Mondin, and F. Sellone, and Pd. Torino, “Integrated Services from High-Altitude Platforms: A Flexible Communication System,” IEEE Communications Magazine, vol. 44, no. 2, Feb. 2006, pp. 85-94.
[10] J.-M. Park, D.-S. Oh, Y.-S. Kim, and D.-S. Ahn, “Evaluation of Interference Effect into Cellular System from High Altitude Platform Station to Provide IMT-2000 Service,” in Proc. IEEE GLOBECOM 2003, vol. 1, pp.420-424.
[11] S. Masumura and M. Nakagawa, “Joint system of terrestrial and high altitude platform station (HAPS) cellular for W-CDMA mobile communications,” IEICE Trans. Commun., vol. E85-B, no. 10, Oct. 2002, pp. 2051-2058.
[12] C. L. I., L. J. Greenstein, and R. D. Gitlin, “A microcell/macrocell cellular architecture for low- and high-mobility wireless users,” IEEE JSAC., vol. 11, no. 6, Aug. 1993, pp. 885-891.
[13] D. I. Axiotis, M. E. Theologou, and E. D. Sykas, “The Effect of Platform Instability on the System Level Performance of HAPS UMTS,” IEEE Commun. Lett., vol. 8, no. 2, Feb. 2004, pp. 111–113.
[14] J.-H. Lee, “Capacity increase of a CDMA cellular system by using directional antennas on mobile stations,” IEEE 42nd Vehicular Technology Conference, vol. 2, 10-13 May 1992, pp.993-996.
[15] A. K. Widiawan and R. Tafazolli, “Analytical investigation on sharing band overlaid high altitude platform station-terrestrial CDMA system,” Electron. Lett,. vol. 41, no. 2, 20 Jan. 2005, pp. 77-79.
[16] http://www.sprl.umich.edu/
[17] S. Karapantazis, and F.-N. Pavlidou, “The impact of imperfect power control and multiuser detection on the uplink of a WCDMA high altitude platform system,” IEEE Commun. Lett., vol. 9, no. 5, May 2005, pp.414–416.
[18] S. Nakamura, Numerical Analysis and Graphic Visulization, 2nd ed.,Prentice Hall, New Jersey, 2002, pp. 211–215.