簡易檢索 / 詳目顯示

研究生: 黃信豪
Huang, Sin-Hao
論文名稱: 稻殼矽素液抑制蝕骨細胞分化的機制探討
Mechanisms of rice husk silica liquid in inhibiting osteoclast differentiation
指導教授: 洪永瀚
Hong, Yong-Han
口試委員: 洪永瀚
Hong, Yong-Han
陳栢均
Chen, Po-Chun
高傑
Kao, Jay
侯君翰
Hou, Chun-Han
口試日期: 2024/07/11
學位類別: 碩士
Master
系所名稱: 營養科學碩士學位學程
Graduate Program of Nutrition Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 91
中文關鍵詞: 矽素稻殼二氧化矽液劑蝕骨細胞細胞自噬
英文關鍵詞: silicon, rice husk silica liquid, osteoclast, autophagy
DOI URL: http://doi.org/10.6345/NTNU202401842
論文種類: 學術論文
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人體骨骼的建構與骨質的平衡主要由造骨細胞 (osteoblast)及蝕骨細胞(osteoclast)負責,兩者細胞具備體內恆定 (homeostasis)效應,並與細胞外基質 (extracellular matrix)連結形成骨骼系統,而當骨組織的代謝發生失衡將引發骨頭疾病,包括骨質疏鬆症、骨關節炎、骨頭畸形、類風溼性關節炎等。矽 (silicon, Si)屬於超微量元素,過去研究已指出矽元素具有維持及改善結締組織、關節、骨頭及皮膚等結構完整的功能,在動物和人體試驗結果顯示矽元素的補充可增加骨頭礦物質密度,並能改善骨質強度。然而,目前探討矽元素對於骨質流失的研究甚少,機制同樣未明。本研究團隊製作一種高吸收率的矽素液劑 (rice husk silica liquid, RHSL),是來自稻殼提取的二氧化矽經鹼溶後的液態劑型,目前已知RHSL可能作為細胞自噬 (autophagy)增強劑的潛力。近年研究發現造骨細胞與蝕骨細胞的骨平衡效益,和細胞內自噬作用 (autophagy)調節可能關係密切,因此本論文欲研究 RHSL 是否影響蝕骨細胞分化,並探討如何透過細胞內機轉及細胞自噬來影響細胞的分化。本研究以 RAW264.7 巨噬細胞 (後續以 RAW 細胞表示)作為分化基礎模式,以 RANKL (Receptor activator of nuclear factor-κB ligand)及 M-CSF (Macrophage colony stimulating factor)誘發 RAW 細胞分化成蝕骨細胞,分化過程加入不同濃度 RHSL 檢測蝕骨細胞分化的改變。結果顯示蝕骨細胞的數量會隨著 RHSL 處理濃度上升而減少 (矽素濃度 25-100 μg/mL);透過西方點墨法分析發現 RHSL 處理明顯降低 ERK 與 AKT 蛋白質磷酸化,卻提高 JNK 蛋白質磷酸化。另外,利用自噬體染色 (acridine orange)則發現 RHSL 會增加自噬作用,具劑量效應,推測 RHSL 藉由提高 JNK 來促進蝕骨細胞自噬作用,因此減少蝕骨細胞的分化。根據本研究結果, RHSL 具有抑制蝕骨細胞形成的能力,未來可能作為改善骨質代謝疾病的潛力元素,值得更多研究支持。

    The construction of the human skeletal system and the balance of bone quality are primarily regulated by osteoblasts and osteoclasts, two types of cells that maintain homeostasis within the body. These cells form the skeletal system by connecting with the extracellular matrix. Imbalances in bone tissue metabolism can lead to various bone disorders, including osteoporosis, osteoarthritis, bone deformities, and rheumatoid arthritis. Silicon (Si) is considered a trace element, and past research has indicated its role in maintaining and improving the integrity of connective tissues, joints, bones, and skin. Animal and human experiments have shown that supplementing silicon can increase bone mineral density and enhance bone strength. However, there is limited research on the impact of silicon on bone loss, and the underlying mechanisms remain unclear. Our research team has developed a high-absorption silicon solution called rice husk silica liquid (RHSL), derived from alkaline-treated silicon dioxide extracted from rice husks. Currently, RHSL is being explored for its potential as an enhancer of cellular autophagy. Recent studies have suggested a close relationship between the benefits of bone balance with osteoblasts and osteoclasts and the regulation of cellular autophagy. Therefore, this study aims to investigate whether RHSL influences osteoclast differentiation and explore the mechanisms by which it affects cellular differentiation through intracellular pathways and autophagy. In this study, RAW264.7 macrophage cells (referred to as RAW cells) were used as a differentiation model. RANKL (Receptor activator of nuclear factor-κB ligand) and M-CSF (Macrophage colony-stimulating factor) were employed to induce the differentiation of RAW cells into osteoclasts, and different concentrations of RHSL were added during the differentiation process to assess changes in differentiation. The results showed that the number of differentiated osteoclasts decreased with increasing RHSL concentrations (silicon concentration 25-100 μg/mL). Western blot analysis revealed that RHSL treatment significantly reduced the phosphorylation of ERK and AKT proteins while increasing the phosphorylation of JNK protein. Additionally, acridine orange staining for autophagosomes indicated that RHSL increased autophagy in a dose-dependent manner. It is suggested that RHSL promotes osteoclast autophagy by upregulating JNK, thereby suppressing osteoclast differentiation. Based on the findings of this study, RHSL demonstrates the ability to inhibit osteoclast formation and may serve as a potential element for improving bone metabolism disorders. Further research is warranted to support these promising results.

    謝誌 i 中文摘要 iii Abstract iv 目錄 vi 表目錄 viii 圖目錄 ix 第一章 緒論 1 第一節、前言 1 第二節、文獻探討 2 一、骨質形成與礦物質化 (mineralization) 2 二、蝕骨細胞 2 三、蝕骨細胞活化途徑 6 四、調節蝕骨細胞生成作用 (osteoclastogenesis) 9 五、自噬作用和骨質形成與恆定(即造骨/蝕骨平衡) 11 六、矽 (silicon)的介紹 17 七、骨頭形成過程矽元素扮演的角色 18 八、骨質、皮膚等結締組織的保護作用 19 第二章 研究方法 23 第一節、實驗材料 23 一、實驗樣品 23 二、藥品與試劑 23 第二節、實驗方法 28 一、蝕骨細胞前驅細胞- RAW264.7 巨噬細胞培養 28 二、小鼠初代骨髓源性巨噬細胞培養 28 三、細胞存活率測試 (Resazurin Cell Viability Assay) 29 四、誘導蝕骨細胞分化 30 五、抗酒石酸性磷酸酶 (TRAP)染色 30 六、肌動蛋白環 (F-actin Ring)染色 30 七、蝕骨細胞骨再吸收 (Bone resorption)能力 30 八、訊息傳遞路徑 (Signaling pathway) 31 九、電子顯微鏡拍照 31 十、前驅蝕骨 (RAW264.7)細胞吸收矽的能力 32 十一、吖啶橙 (Acridine orange)染色 32 十二、CYTO-ID® Autophagy detection kit 染色 32 十三、自噬抑制劑 (autophagy inhibitor) 32 十四、蛋白質表現檢測 33 十五、mRNA表現分析 35 十六、統計分析 37 第三章 結果 38 第一節、探討 RHSL 對於前驅蝕骨細胞存活率影響 38 第二節、探討 FDSL 對於前驅蝕骨細胞存活率影響 40 第三節、探討 RHSL對於初代小鼠骨髓源性巨噬細胞存活率 42 第四節、RHSL 對於蝕骨細胞分化之影響 44 第五節、FDSL 對於蝕骨細胞分化之影響 47 第六節、RHSL 對於蝕骨細胞的 F-actin ring 結構生成之影響 49 第七節、FDSL 對於蝕骨細胞的 F-actin ring 結構生成之影響 49 第八節、RHSL 對於蝕骨細胞的 bone resorption 能力之影響 52 第九節、RHSL 對於 NF-κB、MAPKs 和 PI3K/Akt 路徑之影響 54 第十節、RHSL 及 FDSL 對於蝕骨細胞分化指標物基因表現量 58 第十一節、RHSL 及 FDSL 對於蝕骨細胞分化指標物蛋白質表現量 60 第十二節、RHSL 對於 RAW 細胞分化為蝕骨細胞過程中型態之影響 62 第十三節、RHSL 對於 RAW 細胞分化為蝕骨細胞過程中吸收矽能力 64 第十四節、RHSL 對於 RAW 細胞分化為蝕骨細胞過程中自噬之影響 66 第十五節、探討 RHSL 增加之細胞自噬和蝕骨細胞分化的關係 69 第四章 討論 71 第一節、RHSL 及 FDSL 對前驅 OC 細胞存活率之影響 71 第二節、RHSL 及 FDSL 對細胞誘導成多核蝕骨細胞形態及分化情形 71 第三節、RHSL 對於蝕骨細胞中訊息傳遞路徑之影響 73 第四節、RHSL 對於蝕骨細胞中自噬作用之影響 75 第五節、RHSL 及 FDSL 對於蝕骨細胞中分化標誌物之影響 75 第五章 結論 77 參考文獻 79

    洪永瀚、陳品文、陳裕才(2019)。中華民國專利號I671010。台北:經濟部智慧財產局。
    中華民國血液及骨髓移植學會(2018)。2017移植資料庫年報。
    Anasuya, A., Bapurao, S., & Paranjape, P. K. (1996). Fluoride and silicon intake in normal and endemic fluorotic areas. Journal of Trace Elements in Medicine and Biology : Organ of The Society for Minerals and Trace Elements (GMS), 10(3), 149–155.
    Bae, Y. J., Kim, J. Y., Choi, M. K., Chung, Y. S., & Kim, M. H. (2008). Short-term administration of water-soluble silicon improves mineral density of the femur and tibia in ovariectomized rats. Biological Trace Element Research, 124(2), 157–163.
    Beck, G. R., Jr, Ha, S. W., Camalier, C. E., Yamaguchi, M., Li, Y., Lee, J. K., & Weitzmann, M. N. (2012). Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomedicine : Nanotechnology, Biology, and Medicine, 8(6), 793–803.
    Bonewald L (2011): The Amazing Osteocyte. Journal of Bone and Mineral Research. 26 (2): 229-238.
    Boyle, W. J., Simonet, W. S., & Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature, 423(6937), 337-342.
    Bradley, E. W., Ruan, M. M., Vrable, A., & Oursler, M. J. (2008). Pathway crosstalk between Ras/Raf and PI3K in promotion of M-CSF-induced MEK/ERK-mediated osteoclast survival. Journal of Cellular Biochemistry, 104(4), 1439–1451.
    Breitkreutz, I., Raab, M. S., Vallet, S., Hideshima, T., Raje, N., Chauhan, D., Munshi, N. C., Richardson, P. G., & Anderson, K. C. (2007). Targeting MEK1/2 blocks osteoclast differentiation, function and cytokine secretion in multiple myeloma. British Journal of Haematology, 139(1), 55–63.
    Calomme, M., Geusens, P., Demeester, N., Behets, G. J., D'Haese, P., Sindambiwe, J. B., Van Hoof, V., & Vanden Berghe, D. (2006). Partial prevention of long-term femoral bone loss in aged ovariectomized rats supplemented with choline-stabilized orthosilicic acid. Calcified Tissue International, 78(4), 227–232.
    Carlisle, E. M. (1997). Silicon. In C. Marcel Dekker (Eds.), Handbook of Nutritionally Essential Minerals Elements (pp. 603-618). New York, NY, USA: O'Dell B. L. & Sunde R. A.
    Chang, E. J., Kim, H. J., Ha, J., Kim, H. J., Ryu, J., Park, K. H., Kim, U. H., Lee, Z. H., Kim, H. M., Fisher, D. E., & Kim, H. H. (2007). Hyaluronan inhibits osteoclast differentiation via Toll-like receptor 4. Journal of Cell Science, 120(Pt 1), 166–176.
    Chen, F., Cole, P., Wen, L., Mi, Z., & Trapido, E. J. (1994). Estimates of trace element intakes in Chinese farmers. The Journal of Nutrition, 124(2), 196–201.
    Chen, H. Y., Chiang, Y. F., Wang, K. L., Huang, T. C., Ali, M., Shieh, T. M., Chang, H. Y., Hong, Y. H., & Hsia, S. M. (2021). Rice Husk Silica Liquid Protects Pancreatic β Cells from Streptozotocin-Induced Oxidative Damage. Antioxidants (Basel, Switzerland), 10(7), 1080.
    Chi, H., Kong, M., Jiao, G., Wu, W., Zhou, H., Chen, L., Qiao, Y., Wang, H., Ma, W., & Chen, Y. (2019). The role of orthosilicic acid-induced autophagy on promoting differentiation and mineralization of osteoblastic cells. Journal of Biomaterials Applications, 34(1), 94–103.
    Choi, H. J., Park, Y. R., Nepal, M., Choi, B. Y., Cho, N. P., Choi, S. H., Heo, S. R., Kim, H. S., Yang, M. S., & Soh, Y. (2010). Inhibition of osteoclastogenic differentiation by Ikarisoside A in RAW 264.7 cells via JNK and NF-kappaB signaling pathways. European Journal of Pharmacology, 636(1-3), 28–35.
    Choi, M. K., & Kim, M. H. (2017). Dietary Silicon Intake of Korean Young Adult Males and Its Relation to their Bone Status. Biological Trace Element Research, 176(1), 89–104.
    Cicchini, M., Karantza, V., & Xia, B. (2015). Molecular pathways: autophagy in cancer--a matter of timing and context. Clinical Cancer Research : an Official Journal of The American Association for Cancer Research, 21(3), 498–504.
    Collin-Osdoby, P., & Osdoby, P. (2012). RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods in Molecular Biology (Clifton, N.J.), 816, 187–202.
    DeSelm, C. J., Miller, B. C., Zou, W., Beatty, W. L., van Meel, E., Takahata, Y., Klumperman, J., Tooze, S. A., Teitelbaum, S. L., & Virgin, H. W. (2011). Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Developmental Cell, 21(5), 966–974.
    Dobbie, J. W., & Smith, M. J. (1982). The silicon content of body fluids. Scottish Medical Journal, 27(1), 17–19.
    Eisinger, J., & Clairet, D. (1993). Effects of silicon, fluoride, etidronate and magnesium on bone mineral density: a retrospective study. Magnesium Research, 6(3), 247–249.
    Essabar, L., Meskini, T., Ettair, S., Erreimi, N., & Mouane, N. (2014). Malignant infantile osteopetrosis: case report with review of literature. The Pan African Medical Journal, 17, 63.
    Feng, X., Takeshita, S., Namba, N., Wei, S., Teitelbaum, S. L., & Ross, F. P. (2002). Tyrosines 559 and 807 in the cytoplasmic tail of the macrophage colony-stimulating factor receptor play distinct roles in osteoclast differentiation and function. Endocrinology, 143(12), 4868–4874.
    Feng, X., & Teitelbaum, S. L. (2013). Osteoclasts: New Insights. Bone Research, 1(1), 11–26.
    Hamilton J. A. (1997). CSF-I signal transduction: what is of functional significance?. Immunology Today, 18(7), 313–317.
    Hong, Y. H., Tseng, C. C., Setyoningrum, D., Yang, Z. P., Maftuch, Hu, S. Y. (2019). Rice Husk Silica Enhances Innate Immune in Zebrafish (Danio rerio) and Improves Resistance to Aeromonas hydrophila and Streptococcus iniae Infection. Sustainability, 11, 6504.
    Hou, X., & Tian, F. (2022). STAT3-mediated osteogenesis and osteoclastogenesis in osteoporosis. Cell Communication and Signaling : CCS, 20(1), 112.
    Hrdlicka, H.C., Lee, SK. & Delany, A.M (2019). MicroRNAs Are Critical Regulators of Osteoclast Differentiation. Current Molecular Biology Reports, 5, 65–74.
    Hu, J., Li, X., Chen, Y., Han, X., Li, L., Yang, Z., Duan, L., Lu, H., & He, Q. (2020). The protective effect of WKYMVm peptide on inflammatory osteolysis through regulating NF-κB and CD9/gp130/STAT3 signalling pathway. Journal of Cellular and Molecular Medicine, 24(2), 1893–1905.
    Jiang, C., Wang, Y., Zhang, M., & Xu, J. (2022). Cholesterol inhibits autophagy in RANKL-induced osteoclast differentiation through activating the PI3K/AKT/mTOR signaling pathway. Molecular Biology Reports, 49(10), 9217–9229.
    Jimi, E., Takakura, N., Hiura, F., Nakamura, I., & Hirata-Tsuchiya, S. (2019). The Role of NF-κB in Physiological Bone Development and Inflammatory Bone Diseases: Is NF-κB Inhibition "Killing Two Birds with One Stone"?. Cells, 8(12), 1636.
    Johnell, O., & Kanis, J. A. (2004). An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporosis International : a Journal Established as Result of Cooperation between The European Foundation for Osteoporosis and The National Osteoporosis Foundation of The USA, 15(11), 897–902.
    Joung, Y. H., Darvin, P., Kang, D. Y., Sp, N., Byun, H. J., Lee, C. H., Lee, H. K., & Yang, Y. M. (2016). Methylsulfonylmethane Inhibits RANKL-Induced Osteoclastogenesis in BMMs by Suppressing NF-κB and STAT3 Activities. PloS one, 11(7), e0159891.
    Jugdaohsingh, R., Anderson, S. H., Tucker, K. L., Elliott, H., Kiel, D. P., Thompson, R. P., & Powell, J. J. (2002). Dietary silicon intake and absorption. The American Journal of Clinical Nutrition, 75(5), 887–893.
    Jugdaohsingh, R., Tucker, K. L., Qiao, N., Cupples, L. A., Kiel, D. P., & Powell, J. J. (2004). Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. Journal of Bone and Mineral Research : the Official Journal of The American Society for Bone and Mineral Research, 19(2), 297–307.
    Jugdaohsingh R. (2007). Silicon and bone health. The Journal of Nutrition, Health & Aging, 11(2), 99–110.
    Kim, J. H., & Kim, N. (2016). Signaling Pathways in Osteoclast Differentiation. Chonnam Medical Journal, 52(1), 12–17.
    Kim, M. H., Bae, Y. J., Choi, M. K., & Chung, Y. S. (2009). Silicon supplementation improves the bone mineral density of calcium-deficient ovariectomized rats by reducing bone resorption. Biological Trace Element Research, 128(3), 239–247.
    Kobayashi, N., Kadono, Y., Naito, A., Matsumoto, K., Yamamoto, T., Tanaka, S., & Inoue , J. (2001). Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. The EMBO Journal, 20(6), 1271–1280.
    Lee, K., Seo, I., Choi, M. H., & Jeong, D. (2018). Roles of Mitogen-Activated Protein Kinases in Osteoclast Biology. International Journal of Molecular Sciences, 19(10), 3004.
    Lee, S. E., Woo, K. M., Kim, S. Y., Kim, H. M., Kwack, K., Lee, Z. H., & Kim, H. H. (2002). The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone, 30(1), 71–77.
    Li, X., Xu, J., Dai, B., Wang, X., Guo, Q., & Qin, L. (2020). Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Research Reviews, 62, 101098.
    Li, X., Dong, Y., Zhao, Y., Zhang, T., & Li, J. Y. (2021). Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese Journal of Industrial Hygiene and Occupational Diseases, 39(5), 321–327.
    Lomaga, M. A., Yeh, W. C., Sarosi, I., Duncan, G. S., Furlonger, C., Ho, A., Morony, S., Capparelli, C., Van, G., Kaufman, S., van der Heiden, A., Itie, A., Wakeham, A., Khoo, W., Sasaki, T., Cao, Z., Penninger, J. M., Paige, C. J., Lacey, D. L., Dunstan, C. R., … Mak, T. W. (1999). TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes & Development, 13(8), 1015–1024.
    Mancini, A., Niedenthal, R., Joos, H., Koch, A., Trouliaris, S., Niemann, H., & Tamura, T. (1997). Identification of a second Grb2 binding site in the v-Fms tyrosine kinase. Oncogene, 15(13), 1565–1572.
    Matsuo, K., Galson, D. L., Zhao, C., Peng, L., Laplace, C., Wang, K. Z., Bachler, M. A., Amano, H., Aburatani, H., Ishikawa, H., & Wagner, E. F. (2004). Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. The Journal of Biological Chemistry, 279(25), 26475–26480.
    Mohamed, S. G., Sugiyama, E., Shinoda, K., Taki, H., Hounoki, H., Abdel-Aziz, H. O., Maruyama, M., Kobayashi, M., Ogawa, H., & Miyahara, T. (2007). Interleukin-10 inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos and c-Jun in RAW264.7 cells and mouse bone marrow cells. Bone, 41(4), 592–602.
    Montaseri, A., Giampietri, C., Rossi, M., Riccioli, A., Del Fattore, A., & Filippini, A. (2020). The Role of Autophagy in Osteoclast Differentiation and Bone Resorption Function. Biomolecules, 10(10), 1398.
    Moon, J. B., Kim, J. H., Kim, K., Youn, B. U., Ko, A., Lee, S. Y., & Kim, N. (2012). Akt induces osteoclast differentiation through regulating the GSK3β/NFATc1 signaling cascade. Journal of Immunology (Baltimore, Md. : 1950), 188(1), 163–169.
    Motyckova, G., Weilbaecher, K. N., Horstmann, M., Rieman, D. J., Fisher, D. Z., & Fisher, D. E. (2001). Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family. Proceedings of The National Academy of Sciences of The United States of America, 98(10), 5798–5803.
    Naito, A., Azuma, S., Tanaka, S., Miyazaki, T., Takaki, S., Takatsu, K., Nakao, K., Nakamura, K., Katsuki, M., Yamamoto, T., & Inoue, J. (1999). Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes to Cells : Devoted to Molecular & Cellular Mechanisms, 4(6), 353–362.
    Nakamura, M., Udagawa, N., Matsuura, S., Mogi, M., Nakamura, H., Horiuchi, H., Saito, N., Hiraoka, B. Y., Kobayashi, Y., Takaoka, K., Ozawa, H., Miyazawa, H., & Takahashi, N. (2003). Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology, 144(12), 5441–5449.
    Natsheh, J., Drozdinsky, G., Simanovsky, N., Lamdan, R., Erlich, O., Gorelik, N., Or, R., Weintraub, M., & Stepensky, P. (2016). Improved Outcomes of Hematopoietic Stem Cell Transplantation in Patients With Infantile Malignant Osteopetrosis Using Fludarabine-Based Conditioning. Pediatric Blood & Cancer, 63(3), 535–540.
    Newton, P. T., Vuppalapati, K. K., Bouderlique, T., & Chagin, A. S. (2015). Pharmacological inhibition of lysosomes activates the MTORC1 signaling pathway in chondrocytes in an autophagy-independent manner. Autophagy, 11(9), 1594–1607.
    Nielsen F. H. (2009). Micronutrients in parenteral nutrition: boron, silicon, and fluoride. Gastroenterology, 137(5 Suppl), S55–S60.
    Nielsen F. H. (2014). Update on the possible nutritional importance of silicon. Journal of Trace Elements in Medicine and Biology : Organ of The Society for Minerals and Trace Elements (GMS), 28(4), 379–382.
    O'Brien, J., Wilson, I., Orton, T., & Pognan, F. (2000). Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry, 267(17), 5421–5426.
    Orchard, P. J., Fasth, A. L., Le Rademacher, J., He, W., Boelens, J. J., Horwitz, E. M., Al-Seraihy, A., Ayas, M., Bonfim, C. M., Boulad, F., Lund, T., Buchbinder, D. K., Kapoor, N., O'Brien, T. A., Perez, M. A., Veys, P. A., & Eapen, M. (2015). Hematopoietic stem cell transplantation for infantile osteopetrosis. Blood, 126(2), 270–276.
    Pennanen, P., Kallionpää, R. A., Peltonen, S., Nissinen, L., Kähäri, V. M., Heervä, E., & Peltonen, J. (2021). Signaling pathways in human osteoclasts differentiation: ERK1/2 as a key player. Molecular Biology Reports, 48, 1243-1254.
    Pennington J. A. (1991). Silicon in foods and diets. Food Additives and Contaminants, 8(1), 97–118.
    Qi, S., & Zheng, H. (2017). Combined Effects of Phytoestrogen Genistein and Silicon on Ovariectomy-Induced Bone Loss in Rat. Biological Trace Element Research, 177(2), 281–287.
    Reddy, S. V., Hundley, J. E., Windle, J. J., Alcantara, O., Linn, R., Leach, R. J., Boldt, D. H., & Roodman, G. D. (1995). Characterization of the mouse tartrate-resistant acid phosphatase (TRAP) gene promoter. Journal of Bone and Mineral Research : The Official Journal of The American Society for Bone and Mineral Research, 10(4), 601–606.
    Robberecht, H., Van Cauwenbergh, R., Van Vlaslaer, V., & Hermans, N. (2009). Dietary silicon intake in Belgium: Sources, availability from foods, and human serum levels. The Science of The Total Environment, 407(16), 4777–4782.
    Sanchez, C. P., & He, Y. Z. (2010). Bone growth during rapamycin therapy in young rats. BMC Pediatrics, 9, 3.
    Schiano, A., Eisinger, F., Detolle, P., Laponche, A. M., Brisou, B., & Eisinger, J. (1979). Silicium, tissu osseux et immunité [Silicon, bone tissue and immunity]. Revue Du Rhumatisme Et Des Maladies Osteo-Articulaires, 46(7-9), 483–486.
    Setiawati, R., & Rahardjo, P. (2019). Bone Development and Growth. IntechOpen.
    Solomons, N. W. (1984): The other trace minerals: manganese, molybdenum, vanadium, nickle, silicon and arsenic. In C. N. W. Solomons and I. H. Rosenberg (Eds.), Absorption and Malabsorption of Mineral Nutrients (pp. 269-295). New York, NY: Alan R. Liss.
    Spector, T. D., Calomme, M. R., Anderson, S. H., Clement, G., Bevan, L., Demeester, N., Swaminathan, R., Jugdaohsingh, R., Berghe, D. A., & Powell, J. J. (2008). Choline-stabilized orthosilicic acid supplementation as an adjunct to calcium/vitamin D3 stimulates markers of bone formation in osteopenic females: a randomized, placebo-controlled trial. BMC Musculoskeletal Disorders, 9, 85.
    Sripanyakorn, S., Jugdaohsingh, R., Dissayabutr, W., Anderson, S. H., Thompson, R. P., & Powell, J. J. (2009). The comparative absorption of silicon from different foods and food supplements. The British Journal of Nutrition, 102(6), 825–834.
    Sui, X., Kong, N., Ye, L., Han, W., Zhou, J., Zhang, Q., He, C., & Pan, H. (2014). p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Letters, 344(2), 174–179.
    Takahashi, N., Udagawa, N., & Suda, T. (2014). Vitamin D endocrine system and osteoclasts. BoneKEy Reports, 3, 495.
    Takayanagi H. (2009). Osteoimmunology and the effects of the immune system on bone. Nature Reviews. Rheumatology, 5(12), 667–676.
    Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E. F., Mak, T. W., Kodama, T., & Taniguchi, T. (2002). Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Developmental Cell, 3(6), 889–901.
    Takeshita, S., Faccio, R., Chappel, J., Zheng, L., Feng, X., Weber, J. D., Teitelbaum, S. L., & Ross, F. P. (2007). c-Fms tyrosine 559 is a major mediator of M-CSF-induced proliferation of primary macrophages. The Journal of Biological Chemistry, 282(26), 18980–18990.
    Tong, X., Gu, J., Song, R., Wang, D., Sun, Z., Sui, C., Zhang, C., Liu, X., Bian, J., & Liu, Z. (2019). Osteoprotegerin inhibit osteoclast differentiation and bone resorption by enhancing autophagy via AMPK/mTOR/p70S6K signaling pathway in vitro. Journal of Cellular Biochemistry, 120(2), 1630–1642.
    Truesdell, S. L., & Saunders, M. M. (2019). Bone remodeling platforms: Understanding the need for multicellular lab-on-a-chip systems and predictive agent-based models. Mathematical Biosciences and Engineering : MBE, 17(2), 1233–1252.
    Trumbo, P., Yates, A. A., Schlicker, S., & Poos, M. (2001). Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Journal of The American Dietetic Association, 101(3), 294–301.
    Udagawa, N., Takahashi, N., Yasuda, H., Mizuno, A., Itoh, K., Ueno, Y., Shinki, T., Gillespie, M. T., Martin, T. J., Higashio, K., & Suda, T. (2000). Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology, 141(9), 3478–3484.
    Wedepohl, K. H. (1995). The composition of the continental crust. Geochim. Cosmochim. Acta. 59, 1217-1232.
    Westenfeld, R., Schlieper, G., Wöltje, M., Gawlik, A., Brandenburg, V., Rutkowski, P., Floege, J., Jahnen-Dechent, W., & Ketteler, M. (2011). Impact of sirolimus, tacrolimus and mycophenolate mofetil on osteoclastogenesis--implications for post-transplantation bone disease. Nephrology, Dialysis, Transplantation : Official Publication of The European Dialysis and Transplant Association - European Renal Association, 26(12), 4115–4123.
    Wong, B. R., Besser, D., Kim, N., Arron, J. R., Vologodskaia, M., Hanafusa, H., & Choi, Y. (1999). TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Molecular Cell, 4(6), 1041–1049.
    Wong, B. R., Josien, R., Lee, S. Y., Vologodskaia, M., Steinman, R. M., & Choi, Y. (1998). The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. The Journal of Biological Chemistry, 273(43), 28355–28359.
    Xing, R., Zhang, Y., Li, C., Sun, L., Yang, L., Zhao, J., & Liu, X. (2016). Interleukin-21 promotes osteoclastogenesis in RAW264.7 cells through the PI3K/AKT signaling pathway independently of RANKL. International Journal of Molecular Medicine, 38(4), 1125–1134.
    Xiong, Y., Song, D., Cai, Y., Yu, W., Yeung, Y. G., & Stanley, E. R. (2011). A CSF-1 receptor phosphotyrosine 559 signaling pathway regulates receptor ubiquitination and tyrosine phosphorylation. The Journal of Biological Chemistry, 286(2), 952–960.
    Yamamoto, T., Ikegame, M., Kawago, U., Tabuchi, Y., Hirayama, J., Sekiguchi, T., ... & Suzuki, N. (2020). Detection of RANKL-producing cells and osteoclastic activation by the addition of exogenous RANKL in the regenerating scales of goldfish. Biological Sciences in Space, 34, 34-40.
    Yang, Y., Chung, M. R., Zhou, S., Gong, X., Xu, H., Hong, Y., Jin, A., Huang, X., Zou, W., Dai, Q., & Jiang, L. (2019). STAT3 controls osteoclast differentiation and bone homeostasis by regulating NFATc1 transcription. The Journal of Biological Chemistry, 294(42), 15395–15407.
    Yu, W., Chen, J., Xiong, Y., Pixley, F. J., Dai, X. M., Yeung, Y. G., & Stanley, E. R. (2008). CSF-1 receptor structure/function in MacCsf1r-/- macrophages: regulation of proliferation, differentiation, and morphology. Journal of Leukocyte Biology, 84(3), 852–863.
    Yu, W., Chen, J., Xiong, Y., Pixley, F. J., Yeung, Y. G., & Stanley, E. R. (2012). Macrophage proliferation is regulated through CSF-1 receptor tyrosines 544, 559, and 807. The Journal of Biological Chemistry, 287(17), 13694–13704.
    Yun, T. J., Tallquist, M. D., Aicher, A., Rafferty, K. L., Marshall, A. J., Moon, J. J., Ewings, M. E., Mohaupt, M., Herring, S. W., & Clark, E. A. (2001). Osteoprotegerin, a crucial regulator of bone metabolism, also regulates B cell development and function. Journal of immunology (Baltimore, Md. : 1950), 166(3), 1482–1491.
    Zhang, Y., Cui, Y., Wang, L., & Han, J. (2020). Autophagy promotes osteoclast podosome disassembly and cell motility athrough the interaction of kindlin3 with LC3. Cellular Signalling, 67, 109505.
    Zhang, Y., Xu, S., Li, K., Tan, K., Liang, K., Wang, J., Shen, J., Zou, W., Hu, L., Cai, D., Ding, C., Li, M., Xiao, G., Liu, B., Liu, A., & Bai, X. (2017). mTORC1 inhibits NF-κB/NFATc1 signaling and prevents osteoclast precursor differentiation, in vitro and in mice. Journal of Bone and Mineral Research : The Official Journal of The American Society for Bone and Mineral Research, 32(9), 1829–1840.
    Zhao, H., Sun, Z., Ma, Y., Song, R., Yuan, Y., Bian, J., Gu, J., & Liu, Z. (2020). Antiosteoclastic bone resorption activity of osteoprotegerin via enhanced AKT/mTOR/ULK1-mediated autophagic pathway. Journal of Cellular Physiology, 235(3), 3002–3012.
    Zhao, Q., Shao, J., Chen, W., & Li, Y. P. (2007). Osteoclast differentiation and gene regulation. Frontiers in Bioscience : a Journal and Virtual Library, 12, 2519–2529.

    無法下載圖示 電子全文延後公開
    2029/07/31
    QR CODE