簡易檢索 / 詳目顯示

研究生: 孫培峰
Sun, Pei-Feng
論文名稱: 微生物在臺灣小毛氈苔的分布及其影響
The role of microbes inside Drosera spatulata’s mucilage
指導教授: 蔡怡陞
Tsai, Isheng Jason
口試委員: 蔡怡陞
Tsai, Isheng Jason
羅南德
Roland Kirschner
陳盈嵐
Chen, Ying-Lan
林盈仲
Lin, Ying-Chung Jimmy
陳可萱
Chen, Ko-Hsuan
口試日期: 2023/04/11
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 192
英文關鍵詞: Acrodontium crateriforme, Drosera spatulata, interaction, mucilage, traps
研究方法: 調查研究比較研究田野調查法
DOI URL: http://doi.org/10.6345/NTNU202400545
論文種類: 學術論文
相關次數: 點閱:26下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Carnivorous plants secrete digestive fluid for nutrient acquisition. Although the fluid provides extreme conditions with low pH value and hydrolytic enzymes, several studies have found that the microbial community inside the mucilage plays an important role for prey digestion. Drosera spatulata is a carnivorous plant that secretes mucilage to stick to insects. Its leaves are covered with “tentacles” ending in glandular heads. These heads include glandular cells which produce sticky mucilage. Unlike pitcher plants containing digestive fluid inside modified foliar structures, the mucilage of D. spatulata is exposed to the environment. External influences are especially important in determining the distribution and abundance of microorganisms. In this study, we characterised the microbial communities of D. spatulata mucilage from northern Taiwan by using amplicon sequencing. To identify the relationship between D. spatulata and microorganisms, we inoculated microbes on D. spatulata and analyzed their gene expression. As the result, we found that the fungus Acrodontium crateriforme is the ecologically dominant species in D. spatulata mucilage. Based on the transcriptomes when encountering prey insects, we revealed a high degree of genetic co-option in each species during fungus-plant coexistence and digestion. Expression patterns of the holobiont during digestion further revealed synergistic effects in several gene families including fungal aspartic and sedolisin peptidases, which facilitate the digestion of sundew’s prey, as well as transporters and dose-dependent responses in plant genes involved in the jasmonate signalling pathway. This study shows that botanical carnivory is defined by multidimensional adaptations that correlate with interspecific interactions.

    Chapter1: Introduction 1 1.1 Microbe-phyllosphere interaction 1 1.2 Carnivorous plants 1 1.3 Drosera 2 1.4 Objectives 3 Chapter2: Persistence of dominant fungus Acrodontium crateriforme in mucilage of sundew Drosera spatulata 4 2.1 Introduction 4 2.2 Methods and Materials 11 2.2.1 Collection of sundew mucilage and surrounding plants 11 2.2.2 Genomic DNA extraction and metabarcoding of environmental samples 11 2.2.3 Amplicon sequencing data processing 12 2.2.4 Morphology observation of D. spatulata stalk gland 13 2.3 Results 14 2.3.1 Fungal communities in Drosera mucilage were distinct from those in surrounding plants 14 2.3.2 Ecological dominance of A. crateriforme in Drosera plant 17 2.4 Discussion 24 Chapter3: The genomic basis behind sundew Drosera spatulata’s response to A. crateriforme and its prey 26 3.1 Introduction 26 3.2 Methods and Materials 27 3.2.1 Isolation and identification of fungal species from sundew mucilage 27 3.2.2 Preparation of sterilised Drosera spatulata 28 3.2.3 Preparation of different substrates for feeding experiment 28 3.2.4 A. crateriforme growth conditions in different condition 28 3.2.5 Genome sequencing, assembly and annotation of A. crateriforme 29 3.2.6 Greenhouse experiment for plant-microbe interaction 29 3.2.7 RNA extraction 29 3.2.8 Gene prediction of A. crateriforme 30 3.2.9 Inoculation experiment 31 3.2.10 Western blot 31 3.2.11 Feeding experiment of D. spatulata 31 3.2.12 Comparative genomics and phylogenomics 32 3.2.13 Transcriptome analysis 32 3.2.14 Phytohormone analysis 33 3.3 Results 38 3.3.1 A. crateriforme enhanced prey digestion in D. spatulata 38 3.3.2 Genome of A. crateriforme as an extremophilic fungus 41 3.3.3 Digestion genes were co-opted and retained ancestral expression trends from plant-microbial coexistence 52 3.3.4 Transcriptome dynamic of holobiont digestion in nature 61 3.3.5 Synergistic expression in fungal peptidases and transporters 77 3.3.6 Dosage dependent response of genes involved in Jasmonate (JA) signalling pathway 81 3.4 Discussion 84 Chapter4: Conclusion 86 References 180

    1 Čapek, P. et al. A plant–microbe interaction framework explaining nutrient effects on primary production. Nature ecology & evolution 2, 1588-1596 (2018).
    2 Mehmood, A. et al. In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 77, 225-235 (2019).
    3 Shalev, O. et al. Commensal Pseudomonas strains facilitate protective response against pathogens in the host plant. Nature ecology & evolution 6, 383-396 (2022).
    4 Ling, S. et al. Enhanced anti-herbivore defense of tomato plants against Spodoptera litura by their rhizosphere bacteria. BMC Plant Biology 22, 254 (2022).
    5 Van Noorden, G. E. et al. Molecular signals controlling the inhibition of nodulation by nitrate in Medicago truncatula. International Journal of Molecular Sciences 17, 1060 (2016).
    6 Kuang, W. et al. Genome and transcriptome sequencing analysis of Fusarium commune provides insights into the pathogenic mechanisms of the lotus rhizome rot. Microbiology spectrum 10, e00175-00122 (2022).
    7 Wan, C. et al. A serine-rich effector from the stripe rust pathogen targets a Raf-like kinase to suppress host immunity. Plant Physiology 190, 762-778 (2022).
    8 Yao, H. et al. Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome 7, 1-15 (2019).
    9 Svistoonoff, S. et al. The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis. PLoS One 8, e64515 (2013).
    10 Liu, X. et al. Phyllosphere microbiome induces host metabolic defence against rice false-smut disease. Nature Microbiology, 1-15 (2023).
    11 Iqbal, M. et al. Plant microbe mediated enhancement in growth and yield of canola (Brassica napus L.) plant through auxin production and increased nutrient acquisition. Journal of Soils and Sediments 23, 1233-1249 (2023).
    12 Vadassery, J. et al. The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Molecular Plant-Microbe Interactions 21, 1371-1383 (2008).
    13 Chen, C., Gao, M., Liu, J. & Zhu, H. Fungal symbiosis in rice requires an ortholog of a legume common symbiosis gene encoding a Ca2+/calmodulin-dependent protein kinase. Plant physiology 145, 1619-1628 (2007).
    14 Venkatachalam, S. et al. Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere. Plant Biology 18, 627-637 (2016).
    15 Romero, F. M., Marina, M. & Pieckenstain, F. L. Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases. Research in microbiology 167, 222-233 (2016).
    16 Freund, M. et al. The digestive systems of carnivorous plants. Plant physiology 190, 44-59 (2022).
    17 Mithöfer, A. Carnivorous plants and their biotic interactions. Journal of Plant Interactions 17, 333-343 (2022).
    18 Procko, C. et al. Dynamic calcium signals mediate the feeding response of the carnivorous sundew plant. Proceedings of the National Academy of Sciences 119, e2206433119 (2022).
    19 Palfalvi, G. et al. Genomes of the venus flytrap and close relatives unveil the roots of plant carnivory. Current Biology 30, 2312-2320. e2315 (2020).
    20 Chan, X. Y., Hong, K. W., Yin, W. F. & Chan, K. G. Microbiome and Biocatalytic Bacteria in Monkey Cup (Nepenthes Pitcher) Digestive Fluid. Sci Rep 6, 20016, doi:10.1038/srep20016 (2016).
    21 Caravieri, F. A. et al. Bacterial community associated with traps of the carnivorous plants Utricularia hydrocarpa and Genlisea filiformis. Aquatic botany 116, 8-12 (2014).
    22 Sickel, W., Grafe, T. U., Meuche, I., Steffan-Dewenter, I. & Keller, A. Bacterial diversity and community structure in two Bornean Nepenthes species with differences in nitrogen acquisition strategies. Microbial ecology 71, 938-953 (2016).
    23 Li, Y. et al. Microbial taxonomical composition in spruce phyllosphere, but not community functional structure, varies by geographical location. PeerJ 7, e7376 (2019).
    24 Grothjan, J. J. & Young, E. B. Diverse microbial communities hosted by the model carnivorous pitcher plant Sarracenia purpurea: analysis of both bacterial and eukaryotic composition across distinct host plant populations. PeerJ 7, e6392 (2019).
    25 Alcaraz, L. D., Martinez-Sanchez, S., Torres, I., Ibarra-Laclette, E. & Herrera-Estrella, L. The metagenome of utricularia gibba's traps: Into the microbial input to a carnivorous plant. PloS one 11, e0148979 (2016).
    26 Matušíková, I. et al. Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifoliaL.) show induction of chitinase activity upon mimicking the presence of prey. Planta 222, 1020-1027 (2005).
    27 Poppinga, S., Hartmeyer, S. R., Masselter, T., Hartmeyer, I. & Speck, T. Trap diversity and evolution in the family Droseraceae. Plant signaling & behavior 8, e24685 (2013).
    28 El-Sayed, A. M., Byers, J. A. & Suckling, D. M. Pollinator-prey conflicts in carnivorous plants: when flower and trap properties mean life or death. Scientific reports 6, 21065 (2016).
    29 Hanslin, H. & Karlsson, P. Nitrogen uptake from prey and substrate as affected by prey capture level and plant reproductive status in four carnivorous plant species. Oecologia 106, 370-375 (1996).
    30 Millett, J., Jones, R. I. & Waldron, S. The contribution of insect prey to the total nitrogen content of sundews (Drosera spp.) determined in situ by stable isotope analysis. New Phytologist 158, 527-534 (2003).
    31 Fu, S.-F. et al. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal biology 120, 433-448 (2016).
    32 Chambers, S. M., Curlevski, N. J. & Cairney, J. W. Ericoid mycorrhizal fungi are common root inhabitants of non-Ericaceae plants in a south-eastern Australian sclerophyll forest. FEMS Microbiol Ecol 65, 263-270, doi:10.1111/j.1574-6941.2008.00481.x (2008).
    33 Nakano, M., Kinoshita, E. & Ueda, K. Life history traits and coexistence of an amphidiploid, Drosera tokaiensis, and its parental species, D. rotundifolia and D. spatulata (Droseraceae). Plant Species Biology 19, 59-72 (2004).
    34 Krausko, M. et al. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis. New Phytologist 213, 1818-1835 (2017).
    35 Bauer, U., Müller, U. K. & Poppinga, S. Complexity and diversity of motion amplification and control strategies in motile carnivorous plant traps. Proceedings of the Royal Society B 288, 20210771 (2021).
    36 Roy, J. C. et al. Solubility of chitin: solvents, solution behaviors and their related mechanisms. Solubility of polysaccharides 10 (2017).
    37 Hatcher, C. R., Ryves, D. B. & Millett, J. The function of secondary metabolites in plant carnivory. Annals of botany 125, 399-411 (2020).
    38 Takeuchi, Y. et al. Bacterial diversity and composition in the fluid of pitcher plants of the genus Nepenthes. Systematic and applied microbiology 38, 330-339 (2015).
    39 Boynton, P. J., Peterson, C. N. & Pringle, A. Superior dispersal ability can lead to persistent ecological dominance throughout succession. Applied and environmental microbiology 85, e02421-02418 (2019).
    40 Sirová, D. et al. Microbial community development in the traps of aquatic Utricularia species. Aquatic Botany 90, 129-136 (2009).
    41 Cao, H. X. et al. Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species. Frontiers in microbiology 6, 526 (2015).
    42 Fleischmann, A., Cross, A., Gibson, R., Gonella, P. & Dixon, K. in Carnivorous plants: physiology, ecology, and evolution 45-57 (2018).
    43 Poppinga, S., Hartmeyer, S. R., Masselter, T., Hartmeyer, I. & Speck, T. Trap diversity and evolution in the family Droseraceae. Plant Signal Behav 8, e24685, doi:10.4161/psb.24685 (2013).
    44 Erni, P., Varagnat, M. & McKinley, G. H. in AIP Conference Proceedings. 579-581 (American Institute of Physics).
    45 Rost, K. & Schauer, R. Physical and chemical properties of the mucin secreted by Drosera capensis. Phytochemistry 16, 1365-1368 (1977).
    46 Ravee, R., Salleh, F. I. M. & Goh, H.-H. Discovery of digestive enzymes in carnivorous plants with focus on proteases. PeerJ 6, e4914 (2018).
    47 Butts, C. T., Bierma, J. C. & Martin, R. W. Novel proteases from the genome of the carnivorous plant Drosera capensis: structural prediction and comparative analysis. Proteins: Structure, Function, and Bioinformatics 84, 1517-1533 (2016).
    48 Ďurechová, D., Matušíková, I., Moravčíková, J., Jopčík, M. & Libantová, J. ISOLATION AND CHARACTERIZATION OF CHITINASE GENE FROM THE UNTRADITIONAL PLANT SPECIES. Journal of Microbiology, Biotechnology and Food Sciences 2021, 2208-2216 (2021).
    49 Matušíková, I. et al. Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey. Planta 222, 1020-1027 (2005).
    50 Michalko, J. & Matušíková, I. Study on the role of glucanases in digestion of carnivorous plant Drosera rotundifolia L. Journal of Microbiology, Biotechnology and Food Sciences 2021, 671-678 (2021).
    51 Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688, doi:10.1126/science.1256688 (2014).
    52 Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79, 5112-5120, doi:10.1128/AEM.01043-13 (2013).
    53 Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460-2461, doi:10.1093/bioinformatics/btq461 (2010).
    54 Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10, 996-998, doi:10.1038/nmeth.2604 (2013).
    55 McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217, doi:10.1371/journal.pone.0061217 (2013).
    56 Edgar, R. C. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ 6, e4652, doi:10.7717/peerj.4652 (2018).
    57 Edgar, R. C. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. biorxiv, 074161 (2016).
    58 Abarenkov, K. et al. The UNITE database for molecular identification of fungi–recent updates and future perspectives. The New Phytologist 186, 281-285 (2010).
    59 Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1-14, doi:10.1186/s40168-018-0605-2 (2018).
    60 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 1-21, doi:10.1186/s13059-014-0550-8 (2014).
    61 Leck, A. Preparation of lactophenol cotton blue slide mounts. Community Eye Health 12, 24 (1999).
    62 Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Scientific Data 7, 1-14 (2020).
    63 Coleine, C., Stajich, J. E. & Selbmann, L. Fungi are key players in extreme ecosystems. Trends in ecology & evolution (2022).
    64 Deb, D., Khan, A. & Dey, N. Phoma diseases: Epidemiology and control. Plant Pathology 69, 1203-1217 (2020).
    65 Zhdanova, N. et al. Peculiarities of soil mycobiota composition in Chernobyl NPP. Ukrayins' kij Botanyichnij Zhurnal 51, 134-144 (1994).
    66 Luque, J., Parladé, J. & Pera, J. Pathogenicity of fungi isolated from Quercus suber in Catalonia (NE Spain). Forest Pathology 30, 247-263 (2000).
    67 Tokumasu, S. Mycofloral succession on Pinus densiflora needles on a moder site. Mycoscience 37, 313-321 (1996).
    68 Tiscornia, S., Segui, C. & Bettucci, L. Composition and characterization of fungal communities from different composted materials. Cryptogamie Mycol 30, 363-376 (2009).
    69 Nagano, Y. et al. Comparison of techniques to examine the diversity of fungi in adult patients with cystic fibrosis. Medical mycology 48, 166-176 (2010).
    70 Ruibal, C., Platas, G. & Bills, G. High diversity and morphological convergence among melanised fungi from rock formations in the Central Mountain System of Spain. Persoonia: Molecular Phylogeny and Evolution of Fungi 21, 93 (2008).
    71 Prabhugaonkar, A. & Pratibha, J. Isolation of Acrodontium crateriforme as a pitcher trap inquiline. Curr. Res. Environ. Appl. Mycol 7, 203-207 (2017).
    72 Sa’diyah, W., Hashimoto, A., Okada, G. & Ohkuma, M. Notes on some interesting sporocarp-inhabiting fungi isolated from xylarialean fungi in Japan. Diversity 13, 574 (2021).
    73 TAKAHASHI, K., MATSUMOTO, K., NISHII, W., MURAMATSU, M. & KUBOTA, K. DIGESTIVE FLUIDS OF NEPENTHES, CEPHALOTUS, DIONAEA, AND DROSERA.
    74 de Hoog, G. S. The genera Beauveria, Isaria, Tritirachium and Acrodontium gen. nov. Stud. Mycol. 1, 1-41 (1972).
    75 Vannier, N., Agler, M. & Hacquard, S. Microbiota-mediated disease resistance in plants. PLoS pathogens 15, e1007740 (2019).
    76 Grothjan, J. J. & Young, E. B. Bacterial recruitment to carnivorous pitcher plant communities: identifying sources influencing plant microbiome composition and function. Frontiers in Microbiology 13, 791079 (2022).
    77 Burns, J. H., Anacker, B. L., Strauss, S. Y. & Burke, D. J. Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB plants 7, plv030 (2015).
    78 Noman, M. et al. Plant–Microbiome crosstalk: Dawning from composition and assembly of microbial community to improvement of disease resilience in plants. International Journal of Molecular Sciences 22, 6852 (2021).
    79 Chaudhry, V. et al. Shaping the leaf microbiota: plant–microbe–microbe interactions. Journal of Experimental Botany 72, 36-56 (2021).
    80 Bittleston, L. S. et al. Convergence between the microcosms of Southeast Asian and North American pitcher plants. Elife 7, e36741 (2018).
    81 Armitage, D. W. Linking the development and functioning of a carnivorous pitcher plant’s microbial digestive community. The ISME journal 11, 2439-2451 (2017).
    82 Karlsson, P., Nordell, K., Carlsson, B. & Svensson, B. The effect of soil nutrient status on prey utilization in four carnivorous plants. Oecologia 86, 1-7 (1991).
    83 Pavlovič, A. & Mithöfer, A. Jasmonate signalling in carnivorous plants: copycat of plant defence mechanisms. Journal of experimental botany 70, 3379-3389 (2019).
    84 Renner, T. & Specht, C. D. Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales. Current opinion in plant biology 16, 436-442 (2013).
    85 Pavlovič, A., Vrobel, O. & Tarkowski, P. Water Cannot Activate Traps of the Carnivorous Sundew Plant Drosera capensis: On the Trail of Darwin’s 150-Years-Old Mystery. Plants 12, 1820 (2023).
    86 True, J. R. & Carroll, S. B. Gene co-option in physiological and morphological evolution. Annual review of cell and developmental biology 18, 53-80 (2002).
    87 Mesny, F., Hacquard, S. & Thomma, B. P. Co‐evolution within the plant holobiont drives host performance. EMBO reports 24, e57455 (2023).
    88 Videira, S. et al. Mycosphaerellaceae–chaos or clarity? Studies in Mycology 87, 257-421 (2017).
    89 Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30, 772-780, doi:10.1093/molbev/mst010 (2013).
    90 Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973, doi:10.1093/bioinformatics/btp348 (2009).
    91 Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32, 268-274, doi:10.1093/molbev/msu300 (2015).
    92 Krolicka, A. et al. Antibacterial and antioxidant activity of the secondary metabolites from in vitro cultures of the Alice sundew (Drosera aliciae). Biotechnol Appl Biochem 53, 175-184, doi:10.1042/BA20080088 (2009).
    93 Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC bioinformatics 18, 1-26 (2017).
    94 Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome research 27, 722-736 (2017).
    95 Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27, 737-746, doi:10.1101/gr.214270.116 (2017).
    96 Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS one 9, e112963 (2014).
    97 Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic acids research 45, e18-e18 (2017).
    98 Dobin, A. & Gingeras, T. R. Mapping RNA-seq Reads with STAR. Curr Protoc Bioinformatics 51, 11 14 11-11 14 19, doi:10.1002/0471250953.bi1114s51 (2015).
    99 Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29, 644-652, doi:10.1038/nbt.1883 (2011).
    100 Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33, 290-295, doi:10.1038/nbt.3122 (2015).
    101 Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7, 562-578, doi:10.1038/nprot.2012.016 (2012).
    102 Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859-1875, doi:10.1093/bioinformatics/bti310 (2005).
    103 Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y. O. & Borodovsky, M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 18, 1979-1990, doi:10.1101/gr.081612.108 (2008).
    104 Tempel, S. Using and understanding RepeatMasker. Methods Mol Biol 859, 29-51, doi:10.1007/978-1-61779-603-6_2 (2012).
    105 Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59, doi:10.1186/1471-2105-5-59 (2004).
    106 Venturini, L., Caim, S., Kaithakottil, G. G., Mapleson, D. L. & Swarbreck, D. Leveraging multiple transcriptome assembly methods for improved gene structure annotation. GigaScience 7, doi:10.1093/gigascience/giy093 (2018).
    107 Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12, 491, doi:10.1186/1471-2105-12-491 (2011).
    108 Matthew Berriman, A. C., Isheng Jason Tsai Creation of a comprehensive repeat library for a newly sequenced parasitic worm genome. PROTOCOL (Version 1) available at Protocol Exchange doi:https://doi.org/10.1038/protex.2018.054 (2018).
    109 Smit, A., Hubley, R & Green, P. RepeatMasker Open-4.0. (2013-2015).
    110 Emerson, I. A. & Chitluri, K. K. DCMP: database of cancer mutant protein domains. Database 2021, baab066 (2021).
    111 Finn, R. D. et al. Pfam: the protein families database. Nucleic acids research 42, D222-D230 (2014).
    112 Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nature methods 12, 59-60 (2015).
    113 Elbourne, L. D., Tetu, S. G., Hassan, K. A. & Paulsen, I. T. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic acids research 45, D320-D324 (2017).
    114 Yin, Y. et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic acids research 40, W445-W451 (2012).
    115 Rawlings, N. D., Barrett, A. J. & Bateman, A. MEROPS: the peptidase database. Nucleic acids research 38, D227-D233 (2010).
    116 Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic acids research 49, W29-W35 (2021).
    117 Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic acids research 47, D309-D314 (2019).
    118 Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics. Journal of computational and graphical statistics 5, 299-314 (1996).
    119 Alexa, A. & Rahnenführer, J. Gene set enrichment analysis with topGO. Bioconductor Improv 27, 1-26 (2009).
    120 Kolde, R. & Kolde, M. R. Package ‘pheatmap’. R package 1, 790 (2015).
    121 Wickham, H. ggplot2. Wiley interdisciplinary reviews: computational statistics 3, 180-185 (2011).
    122 Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20, 238, doi:10.1186/s13059-019-1832-y (2019).
    123 Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC bioinformatics 19, 15-30 (2018).
    124 Baum, B. R. (JSTOR, 1989).
    125 Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884-i890 (2018).
    126 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930 (2014).
    127 Chen, Y.-L. et al. Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. The Plant Cell 26, 4135-4148 (2014).
    128 Sprague-Piercy, M. A. et al. The Droserasin 1 PSI: a membrane-interacting antimicrobial peptide from the carnivorous plant Drosera capensis. Biomolecules 10, 1069 (2020).
    129 Buch, F., Kaman, W. E., Bikker, F. J., Yilamujiang, A. & Mithöfer, A. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous Nepenthes plants. PLoS One 10, e0118853 (2015).
    130 Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome research 18, 188-196 (2008).
    131 Selbmann, L. et al. Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Studies in mycology 61, 1-20 (2008).
    132 Aylward, J. et al. Novel mating-type-associated genes and gene fragments in the genomes of Mycosphaerellaceae and Teratosphaeriaceae fungi. Molecular Phylogenetics and Evolution 171, 107456 (2022).
    133 Coleine, C. et al. Peculiar genomic traits in the stress-adapted cryptoendolithic Antarctic fungus Friedmanniomyces endolithicus. Fungal biology 124, 458-467 (2020).
    134 Romeo, O. et al. Whole genome sequencing and comparative genome analysis of the halotolerant deep sea black yeast Hortaea werneckii. Life 10, 229 (2020).
    135 Bradley, E. L. et al. Secreted glycoside hydrolase proteins as effectors and invasion patterns of plant-associated fungi and oomycetes. Frontiers in Plant Science 13, 853106 (2022).
    136 Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature communications 11, 5125 (2020).
    137 Lee, L., Zhang, Y., Ozar, B., Sensen, C. W. & Schriemer, D. C. Carnivorous nutrition in pitcher plants (Nepenthes spp.) via an unusual complement of endogenous enzymes. Journal of proteome research 15, 3108-3117 (2016).
    138 Gan, P. et al. Subtelomeric regions and a repeat-rich chromosome harbor multicopy effector gene clusters with variable conservation in multiple plant pathogenic Colletotrichum species. bioRxiv, 2020.2004. 2028.061093 (2020).
    139 Goodwin, S. B. et al. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS genetics 7, e1002070 (2011).
    140 Ohm, R. A. et al. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS pathogens 8, e1003037 (2012).
    141 Cairns, T. & Meyer, V. In silico prediction and characterization of secondary metabolite biosynthetic gene clusters in the wheat pathogen Zymoseptoria tritici. BMC genomics 18, 1-16 (2017).
    142 Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics 20, 3643-3646 (2004).
    143 Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome research 19, 1639-1645 (2009).
    144 Pavlovič, A., Jakšová, J. & Novák, O. Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). New Phytologist 216, 927-938 (2017).
    145 Chase, M. W., Christenhusz, M. J., Sanders, D. & Fay, M. F. Murderous plants: Victorian Gothic, Darwin and modern insights into vegetable carnivory. Botanical Journal of the Linnean Society 161, 329-356 (2009).
    146 Jopcik, M. et al. Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.). Planta 245, 313-327 (2017).
    147 Hedrich, R. & Fukushima, K. On the origin of carnivory: molecular physiology and evolution of plants on an animal diet. Annual review of plant biology 72, 133-153 (2021).
    148 Scherzer, S. et al. The Dionaea muscipula ammonium channel DmAMT1 provides NH4+ uptake associated with Venus flytrap’s prey digestion. Current Biology 23, 1649-1657 (2013).
    149 Bemm, F. et al. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Research 26, 812-825 (2016).
    150 Wong, H.-K., Chan, H.-K., Coruzzi, G. M. & Lam, H.-M. Correlation of ASN2 gene expression with ammonium metabolism in Arabidopsis. Plant Physiology 134, 332-338 (2004).
    151 Schulze, W., Frommer, W. B. & Ward, J. M. Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes. The Plant Journal 17, 637-646 (1999).
    152 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics 9, 1-13 (2008).
    153 Reichard, U. et al. Sedolisins, a new class of secreted proteases from Aspergillus fumigatus with endoprotease or tripeptidyl-peptidase activity at acidic pHs. Applied and Environmental Microbiology 72, 1739-1748 (2006).
    154 Muszewska, A. et al. Fungal lifestyle reflected in serine protease repertoire. Scientific Reports 7, 9147 (2017).
    155 Pozo, M. J., López‐Ráez, J. A., Azcón‐Aguilar, C. & García‐Garrido, J. M. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist 205, 1431-1436 (2015).
    156 Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A. & Pozo, M. J. Mycorrhiza-induced resistance and priming of plant defenses. Journal of chemical ecology 38, 651-664 (2012).
    157 Darwin, C. & Darwin, F. Insectivorous plants. (J. Murray, 1888).
    158 Alcalá, R. E. & Domínguez, C. A. Patterns of prey capture and prey availability among populations of the carnivorous plant Pinguicula moranensis (Lentibulariaceae) along an environmental gradient. American Journal of Botany 90, 1341-1348 (2003).
    159 Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Defense priming: an adaptive part of induced resistance. Annual review of plant biology 68, 485-512 (2017).
    160 Miller, T. E., Bradshaw, W. E., Holzapfel, C. M., Ellison, A. & Adamec, L. Pitcher-plant communities as model systems for addressing fundamental questions in ecology and evolution. Carnivorous Plants: Physiology, Ecology, and Evolution, 333-348 (2018).

    下載圖示
    QR CODE