簡易檢索 / 詳目顯示

研究生: 朱任飛
Jen-Fei Chu
論文名稱: 人體端粒鳥嘌呤-四股結構去氧核醣核酸序列: 整體與單分子的研究
G-Quadruplex Structures of Human Telomeric DNA Sequences: Ensemble and Single Molecule Studies
指導教授: 張大釗
Chang, Ta-Chau
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 90
中文關鍵詞: 人體端粒鳥嘌呤-四股結構螢光生命期影像顯微鏡單分子圓二色光譜結構轉換能量圖BMVC
英文關鍵詞: human telomere, G-quadruplex, fluorescence lifetime image microscope, single molecule, circular dichroism, structural conversion, energy diagram, BMVC
論文種類: 學術論文
相關次數: 點閱:128下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 真核細胞的端粒,對於染色體尾端穩定性是相當重要的。在有單價陽離子如鈉或鉀離子存在之下,端粒尾端富含鳥嘌呤單股的DNA序列,可以藉由Hoogsteen氫鍵形成一個二級結構稱之為鳥嘌呤-四股結構。為了驗證人類端粒是否具有鳥嘌呤-四股結構的存在,我們利用了雙光子激發螢光生命期顯微技術,來尋找人體鼻咽癌細胞,中期染色體之中鳥嘌呤-四股結構的位置所在。然而,富含鳥嘌呤序列,可以具有多樣性鳥嘌呤-四股結構,而且改變環境條件可能使其結構互相轉換。舉例來說,鈉鉀離子交換後,會產生一個快速的光譜變化。我們在此利用數種方法,來瞭解鈉鉀離子交換之中所引起的快速光譜變化,其中所隱含的機制。螢光共振能量傳遞與單分子栓球實驗的研究,暗示著這個因鉀離子所產生的快速光譜變化,有可能不是F1UFF2,須經由一個完全展開的中間態。此外,變換溫度的圓二色光譜研究顯示,F1與F2之間的能障幾乎可以忽略。因此,我們認為這個鈉鉀離子交換所產生的快速光譜變化,是由於F1到F2之間,經過了快速的鹼基位移與環的重組所造成的。另一方面,我們在脫水的環境中觀察到,由鈉離子溶液之中的反平行鳥嘌呤-四股結構,轉換為鉀離子溶液中的平行鳥嘌呤-四股結構。利用van’t Hoff的方法,在熱解旋曲線之中,來估計各個摺疊狀態到完全展開狀態之間其自由能的差別,以及利用Eyring的方法,以即時變溫圓二色光譜,來估計鳥嘌呤-四股結構變化所需的活化能,嘗試建立一個HT22在鈉離子溶液中加入脫水環境(40% (w/v) PEG 200)的反平行鳥嘌呤-四股結構,轉換到鉀離子溶液中平行鳥嘌呤-四股結構的熱力學能量圖。此外,由於Cu2+可以誘導鳥嘌呤-四股結構的崩解,再者,EDTA2-可以抑制Cu2+離子的作用,使鳥嘌呤-四股結構可以由展開狀態變回摺疊狀態,根據此方法,我們發現動力學產物在人體生理條件下比較容易生成。更進一步,利用Cu2+離子在室溫下誘導鳥嘌呤-四股結構展開,來作為篩選鳥嘌呤-四股結構配位基的一個新方法。因此,我們篩選出3,6,9三端取代的BMVC4分子,可以作為之後研究的重心。

    Telomeres, the ends of eukaryotic chromosomes, are essential for the stability of chromosomes. In the presence of monovalent cations such as Na+ or K+, the G-rich single stranded DNA of telomere can form a secondary structure through Hoogsteen hydrogen bonds, termed G-quadruplex (G4). We have applied two-photon excitation fluorescence lifetime microscope (2PE-FLIM) to successfully verify and map the localizations of G4 structures in human nasopharyngeal carcinoma metaphase chromosomes. In addition, the G-rich sequences can adopt various G4 structures and possibly interconvert among these structures upon changing solvent and temperature conditions. For example, a fast spectral conversion occurs under Na/K cation exchange. We have developed a number of methods to elucidate the mechanisms of this spectral conversion. Ensemble-based fluorescence resonance energy transfer (FRET) and single molecule tethered particle motion (TPM) studies suggested that the fast spectral conversion is unlikely due to F1UFF2 via a totally unfolded intermediate induced by potassium cations. In addition, temperature-dependent circular dichroism (CD) studies suggested that the energy barrier from F1 to F2 is almost negligible. Thus, we consider that the fast spectral conversion during Na/K cation exchange is due to F1F2 via rapid base shift and loop rearrangement. On the other hand, the structural conversion from the antiparallel G4 structure in Na+ solution to the parallel G4 structure in K+ solution was observed in the presence of dehydrated reagents.
    Using thermodynamic and kinetic studies, a free energy diagram can be tentatively established for the structural conversion of HT22 from antiparallel form in Na+ solution to the parallel in K+ solution at 25℃ under 40 % (w/v) PEG 200 condition. It is known that the Cu2+ induces the unfolding of G4 structure while addition of the EDTA2- can chelate the Cu2+ to reverse the unfolded state to the folded state. Based on this and we found that the kinetic product is likely to play a major role in physiological condition.
    Furthermore, G4 stabilizers are screened by a novel method based on Cu2+ -induced G4 unfolding at room temperature. Thus, 3,6,9 tri-substitution of BMVC4 core molecules are ready to prepare in further study.

    謝 誌………………………………………………………………………………Ⅱ 目 錄………………………………………………………………………………Ⅳ 圖目錄………………………………………………………………………………Ⅶ 表目錄………………………………………………………………………………XI 英文摘要………………………………………………………………………… XII 中文摘要……………………………………………………………………………XIV 第一章 前 言………………………………………………………………………1 1.1端粒,端粒酶, 鳥嘌呤-四股結構……………………………………………1 1.2人體端粒序列鳥嘌呤-四股結構的多樣性………………………………………5 1.3人體端粒鳥嘌呤-四股結構之間的轉換與相關應用……………………………8 1.4論文概要…………………………………………………………………………10 第二章 實驗方法與技術……………………………………………………………13 2.1整體實驗樣品製備………………………………………………………………13 2.1.1吸收與螢光……………………………………………………………………13 2.1.2圓二色旋光光譜 (定溫動力學與變溫熱力學實驗) ………………………14 2.1.3聚丙烯醯胺膠體電泳 (PAGE) 實驗與照膠裝置…………………………14 2.1.4核磁共振光譜之量測…………………………………………………15 2.2單分子實驗樣品製備……………………………………………………………16 2.2.1載玻片及表面修飾樣品的製備………………………………………………18 2.2.2卵白素修飾的乳膠球 (STREPTAVIDIN-COATED BEADS) ……………19 2.3實驗儀器設備架設與資料分析原理……………………………………………19 2.3.1微分干涉顯微鏡與影像截取與分析…………………………………………19 2.3.2遠場/共軛焦轉換式螢光顯微鏡架設………………………………………20 2.3.3單光子與雙光子激發螢光生命期影像顯微術……………………………23 第三章 BMVC可以作為一個螢光探針,分辨雙股與四股結構DNA…………25 3.1 BMVC可以當作鳥嘌呤-四股結構的穩定劑與螢光探針……………………25 3.2利用BMVC螢光生命期的差別可以區分出雙股與四股結構DNA……………27 第四章 利用雙光子激發BMVC的螢光生命期影像顯微鏡來偵查人體 染色體當中鳥嘌呤-四股結構DNA是否存在………………………………………29 4.1非線性光學與雷射共軛焦掃描顯微鏡在生物體中的應用……………………29 4.2利用BMVC做為螢光探針,應用螢光生命期影像來尋找人體中期 染色體中鳥嘌呤-四股結構的位置…………………………………………30 第五章 利用整體與單分子實驗方法來探討鈉鉀離子交換中快速的光譜 變化的機制………………………………………………………………………………33 5.1人體端粒序列鳥嘌呤-四股結構轉換的研究動機…………………………………33 5.1.1早期對於人體端粒序列鳥嘌呤-四股結構轉換的研究………………………34 5.2人體端粒序列鳥嘌呤-四股結構鈉鉀交換離子交換中,短時間內沒有任 何完全展開的中間態發生………………………………………………………38 5.2.1鈉鉀離子的比例可以調控鳥嘌呤-四股結構在鈉鉀離子交換中光譜的轉換…40 5.2.2溫度對於鳥嘌呤-四股結構在鈉鉀離子交換之中的影響: 鈉鉀離子交換所 產生的光譜變化其活化能低…………………………………………………………43 5.3鳥嘌呤-四股結構在單分子栓球實驗鈉鉀離子交換過程中其結構轉換與否?.50 第六章 利用熱力學與動力學的方法定量研究鳥嘌呤-四股結構DNA的 構型轉換機制………………………………………………………………………59 6.1在脫水狀態下鳥嘌呤-四股結構的轉換趨向於平行類的四股結構…………59 6.2配置樣品的流程影響鳥嘌呤-四股結構的構型分布…………………………62 6.3定量描述鳥嘌呤-四股結構轉換………………………………………………65 6.3.1利用VAN’T HOFF的方法來求得鳥嘌呤-四股結構在不同摺疊狀態 之下的穩定性差異…………………………………………………………………65 6.3.2利用EYRING的方法來求得不同摺疊狀態的互換所需克服的 自由能為何?………………………………………………………………………68 6.4能量圖的建立以及鳥嘌呤-四股結構包含著熱力學與動力學產物的發現…70 第七章 利用銅離子所誘導鳥嘌呤-四股結構展開來篩選較有效的 鳥嘌呤-四股結構的配位基 (LIGANDS) ………………………………………74 第八章 論文總結 (CONCLUSION) ……………………………………………79 第九章 論文發表 (PUBLICATIONLIST)………………………………………82 第十章 參考文獻 (REFERENCE)…………………………………………………83 第十一章 附錄 (ALL ACCEPTED MANUSCRIPTS) …………………………90

    (1) Greider, C. W.; Blackburn, E. H. Cell 1985, 43, 405.
    (2) Moyzis, R. K.; Buckingham, J. M.; Cram, L. S.; Dani, M.; Deaven, L. L.; Jones, M. D.; Meyne, J.; Ratliff, R. L.; Wu, J. R. Proc Natl Acad Sci U S A 1988, 85, 6622.
    (3) Greider, C. W.; Blackburn, E. H. Sci. Am. 1996, 274, 92.
    (4) Williamson, J. R.; Raghuraman, M. K.; Cech, T. R. Cell 1989, 59, 871.
    (5) Watson, J. D. Nat. New Biol. 1972, 239, 197.
    (6) Harley, C. B.; Futcher, A. B.; Greider, C. W. Nature 1990, 345, 458.
    (7) Goldstein, S. Science 1990, 249, 1129.
    (8) Sandell, L. L.; Zakian, V. A. Cell 1993, 75, 729.
    (9) Lundblad, V.; Szostak, J. W. Cell 1989, 57, 633.
    (10) Morin, G. B. Cell 1989, 59, 521.
    (11) Greider, C. W.; Blackburn, E. H. Cell 1987, 51, 887.
    (12) Greider, C. W.; Blackburn, E. H. Nature 1989, 337, 331.
    (13) Feng, J.; Funk, W. D.; Wang, S. S.; Weinrich, S. L.; Avilion, A. A.; Chiu, C. P.; Adams, R. R.; Chang, E.; Allsopp, R. C.; Yu, J.; et al. Science 1995, 269, 1236.
    (14) Meyerson, M.; Counter, C. M.; Eaton, E. N.; Ellisen, L. W.; Steiner, P.; Caddle, S. D.; Ziaugra, L.; Beijersbergen, R. L.; Davidoff, M. J.; Liu, Q.; Bacchetti, S.; Haber, D. A.; Weinberg, R. A. Cell 1997, 90, 785.
    (15) Kim, N. W.; Piatyszek, M. A.; Prowse, K. R.; Harley, C. B.; West, M. D.; Ho, P. L.; Coviello, G. M.; Wright, W. E.; Weinrich, S. L.; Shay, J. W. Science 1994, 266, 2011.
    (16) Gellert, M.; Lipsett, M. N.; Davies, D. R. Proc. Natl. Acad. Sci. USA 1962, 48, 2013.
    (17) Zahler, A. M.; Williamson, J. R.; Cech, T. R.; Prescott, D. M. Nature 1991, 350, 718.
    (18) Mergny, J. L.; Helene, C. Nature Med. 1998, 4, 1366.
    (19) Baumann, P.; Cech, T. R. Science 2001, 292, 1171.
    (20) de Lange, T. Science 2009, 326, 948.
    (21) Makarov, V. L.; Hirose, Y.; Langmore, J. P. Cell 1997, 88, 657.
    (22) Wang, Y.; Patel, D. J. Structure 1993, 1, 263.
    (23) Parkinson, G. N.; Lee, M. P. H.; Neidle, S. Nature 2002, 417, 876.
    (24) Ambrus, A.; Chen, D.; Dai, J.; Bialis, T.; Jones, R. A.; Yang, D. Nucleic Acids Res. 2006, 34, 2723.
    (25) Luu, K. N.; Phan, A. T.; Kuryavyi, V.; Lacroix, L.; Patel, D. J. J. Am. Chem. Soc. 2006, 128, 9963.
    (26) Phan, A. T.; Luu, K. N.; Patel, D. J. Nucleic Acids Res. 2006, 34, 5715.
    (27) Lim, K. W.; Amrane, S.; Bouaziz, S.; Xu, W. X.; Mu, Y. G.; Patel, D. J.; Luu, K. N.; Phan, A. T. J. Am. Chem. Soc. 2009, 131, 4301.
    (28) Phan, A. T. FEBS J. 2010, 277, 1107.
    (29) Lim, K. W.; Alberti, P.; Guedin, A.; Lacroix, L.; Riou, J. F.; Royle, N. J.; Mergny, J. L.; Phan, A. T. Nucleic Acids Res. 2009, 37, 6239.
    (30) Davis, J. T. Angew. Chem. Int. Ed. 2004, 43, 668.
    (31) Patel, D. J.; Phan, A. T.; Kuryavyi, V. Nucleic Acids Res. 2007, 35, 7429.
    (32) Neidle, S. Curr. Opin. Struct. Biol. 2009, 19, 239.
    (33) Hud, N. V.; Smith, F. W.; Anet, F. A.; Feigon, J. Biochemistry 1996, 35, 15383.
    (34) Ying, L.; Green, J. J.; Li, H.; Klenerman, D.; Balasubramanian, S. Proc. Natl. Acad. Sci. USA 2003, 100, 14629.
    (35) Lee, J. Y.; Okumus, B.; Kim, D. S.; Ha, T. Proc. Natl. Acad. Sci. USA 2005, 102, 18938.
    (36) N.V. Hud, and J. Plavec. The role of cations in determining quadruplex structure and stability. In Quadruplex Nucleic Acids.; S.Neidle, S. Balasubramanian, Editors; Royal Society of Chemistry, Cambridge, UK, 2006; pp 100.
    (37) Chang, C. C.; Chien, C. W.; Lin, Y. H.; Kang, C. C.; Chang, T. C. Nucleic Acids Res. 2007, 35, 2846.
    (38) Cantor, C. R.; Warshaw, M. M.; Shapiro, H. Biopolymers 1970, 9, 1059.
    (39) Chang, C. C.; Wu, J. Y.; Chang, T. C. J. Chin. Chem. Soc. 2003, 50, 185.
    (40) Chang, C. C.; Wu, J. Y.; Chien, C. W.; Wu, W. S.; Liu, H.; Kang, C. C.; Yu, L. J.; Chang, T. C. Anal. Chem. 2003, 75, 6177.
    (41) Oster, G.; Nishijima, Y. J. Am. Chem. Soc. 1956, 78, 1581.
    (42) Chang, C. C.; Kuo, I. C.; Ling, I. F.; Chen, C. T.; Chen, H. C.; Lou, P. J.; Lin, J. J.; Chang, T. C. Anal. Chem. 2004, 76, 4490.
    (43) Rotkiewi.K; Grellman.Kh; Grabowsk.Zr. Chem. Phys. Lett. 1973, 19, 315.
    (44) Nag, A.; Bhattacharyya, K. Chem. Phys. Lett. 1990, 169, 12.
    (45) Rettig, W. Angew. Chem. Int. Ed. 1986, 25, 971.
    (46) Chang, C. C.; Chu, J. F.; Kuo, H. H.; Kang, C. C.; Lin, S. H.; Chang, T. C. J. Lumin. 2006, 119, 84.
    (47) Castex, M. C.; Olivero, C.; Pichler, G.; Ades, D.; Cloutet, E.; Siove, A. Synthetic Metals 2001, 122, 59.
    (48) Ades, D.; Boucard, V.; Cloutet, E.; Siove, A.; Olivero, C.; Castex, M. C.; Pichler, G. J. Appl. Phys. 2000, 87, 7290.
    (49) Changenet, P.; Zhang, H.; van der Meer, M. J.; Glasbeek, M.; Plaza, P.; Martin, M. M. J. Phys. Chem. A 1998, 102, 6716.
    (50) Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990, 248, 73.
    (51) Thompson, R. E.; Larson, D. R.; Webb, W. W. Biophys. J. 2002, 82, 2775.
    (52) Albota, M.; Beljonne, D.; Bredas, J. L.; Ehrlich, J. E.; Fu, J. Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Rockel, H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X. L.; Xu, C. Science 1998, 281, 1653.
    (53) Chang, C. C.; Chu, J. F.; Kao, F. J.; Chiu, Y. C.; Lou, P. J.; Chen, H. C.; Chang, T. C. Anal. Chem. 2006, 78, 2810.
    (54) Knemeyer, J. P.; Herten, D. P.; Sauer, M. Anal. Chem. 2003, 75, 2147.
    (55) Xu, Y.; Noguchi, Y.; Sugiyama, H. Bioorg. Med. Chem. 2006, 14, 5584.
    (56) Vorlickova, M.; Kejnovska, I.; Tumova, M.; Kypr, J. Eur. Biophys. J. 2001, 30, 179.
    (57) Phan, A. T.; Kuryavyi, V.; Luu, K. N.; Patel, D. J. Nucleic Acids Res. 2007, 35, 6517.
    (58) Gray, R. D.; Li, J.; Chaires, J. B. J. Phys. Chem. B 2009, 113, 2676.
    (59) Weiss, S. Science 1999, 283, 1676.
    (60) Smith, D. E.; Babcock, H. P.; Chu, S. Science 1999, 283, 1724.
    (61) Moerner, W. E.; Orrit, M. Science 1999, 283, 1670.
    (62) Gelles, J.; Schnapp, B. J.; Sheetz, M. P. Nature 1988, 331, 450.
    (63) Yin, H.; Landick, R.; Gelles, J. Biophys. J. 1994, 67, 2468.
    (64) Yin, H.; Artsimovitch, I.; Landick, R.; Gelles, J. Proc. Natl. Acad. Sci. USA 1999, 96, 13124.
    (65) Dohoney, K. M.; Gelles, J. Nature 2001, 409, 370.
    (66) Schafer, D. A.; Gelles, J.; Sheetz, M. P.; Landick, R. Nature 1991, 352, 444.
    (67) Mumm, J. P.; Landy, A.; Gelles, J. EMBO J. 2006, 25, 4586.
    (68) Guerra, R. F.; Imperadori, L.; Mantovani, R.; Dunlap, D. D.; Finzi, L. Biophys. J. 2007, 93, 176.
    (69) Pouget, N.; Turlan, C.; Destainville, N.; Salome, L.; Chandler, M. Nucleic Acids Res. 2006, 34, 4313.
    (70) Fan, H. F.; Li, H. W. Biophys. J. 2009, 96, 1875.
    (71) Finzi, L.; Gelles, J. Science 1995, 267, 378.
    (72) Lin, C. T.; Tseng, T. Y.; Wang, Z. F.; Chang, T. C. J. Phys. Chem. B 2011, 115, 2360.
    (73) Miura, T.; Benevides, J. M.; Thomas, G. J., Jr. J. Mol. Biol. 1995, 248, 233.
    (74) Gray, D. M.; Wen, J. D.; Gray, C. W.; Repges, R.; Repges, C.; Raabe, G.; Fleischhauer, J. Chirality 2008, 20, 431.
    (75) Masiero, S.; Trotta, R.; Pieraccini, S.; De Tito, S.; Perone, R.; Randazzo, A.; Spada, G. P. Org. Biomol. Chem. 2010, 8, 2683.
    (76) Li, W.; Miyoshi, D.; Nakano, S.; Sugimoto, N. Biochemistry 2003, 42, 11736.
    (77) Stryer, L.; Haugland, R. P. Proc. Natl. Acad. Sci. USA 1967, 58, 719.
    (78) Green, J. J.; Ying, L.; Klenerman, D.; Balasubramanian, S. J. Am. Chem. Soc. 2003, 125, 3763.
    (79) Fegan, A.; Shirude, P. S.; Ying, L.; Balasubramanian, S. Chem. Commun. 2010, 46, 946.
    (80) Zhang, Z.; Dai, J.; Veliath, E.; Jones, R. A.; Yang, D. Nucleic Acids Res. 2010, 38, 1009.
    (81) Chu, J. F.; Chang, T. C.; Li, H. W. Biophys. J. 2010, 98, 1608.
    (82) Sen, D.; Gilbert, W. Nature 1988, 334, 364.
    (83) Raghuraman, M. K.; Cech, T. R. Nucleic Acids Res. 1990, 18, 4543.
    (84) Miller, M. C.; Buscaglia, R.; Chaires, J. B.; Lane, A. N.; Trent, J. O. J. Am. Chem. Soc. 2010, 132, 17105.
    (85) Heddi, B.; Phan, A. T. J. Am. Chem. Soc. 2011, dx.doi.org/10.1021/ja200786q.
    (86) Miyoshi, D.; Karimata, H.; Sugimoto, N. J. Am. Chem. Soc. 2006, 128, 7957.
    (87) Xue, Y.; Kan, Z. Y.; Wang, Q.; Yao, Y.; Liu, J.; Hao, Y. H.; Tan, Z. J. Am. Chem. Soc. 2007, 129, 11185.
    (88) Xu, L.; Feng, S.; Zhou, X. Chem. Commun. 2011, 47, 3517.
    (89) Renciuk, D.; Kejnovska, I.; Skolakova, P.; Bednarova, K.; Motlova, J.; Vorlickova, M. Nucleic Acids Res. 2009, 37, 6625.
    (90) Lim, K. W.; Lacroix, L.; Yue, D. J.; Lim, J. K.; Lim, J. M.; Phan, A. T. J. Am. Chem. Soc. 2010, 132, 12331.
    (91) Olsen, C. M.; Lee, H. T.; Marky, L. A. J. Phys. Chem. B 2009, 113, 2587.
    (92) Antonacci, C.; Chaires, J. B.; Sheardy, R. D. Biochemistry 2007, 46, 4654.
    (93) Eyring, H. Chemical Reviews 1935, 17, 65.
    (94) Miyoshi, D.; Nakao, A.; Sugimoto, N. Nucleic Acids Res 2003, 31, 1156.
    (95) Monchaud, D.; Yang, P.; Lacroix, L.; Teulade-Fichou, M. P.; Mergny, J. L. Angew. Chem. Int. Ed. 2008, 47, 4858.
    (96) Zaug, A. J.; Podell, E. R.; Cech, T. R. Proc. Natl. Acad. Sci. USA 2005, 102, 10864.
    (97) Gomez, D.; Guedin, A.; Mergny, J. L.; Salles, B.; Riou, J. F.; Teulade-Fichou, M. P.; Calsou, P. Nucleic Acids Res. 2010, 38, 7187.
    (98) Sanders, C. M. Biochem. J. 2010, 430, 119.
    (99) Miyoshi, D.; Pramanik, S.; Nakamura, K.; Usui, K.; Nakano, S.; Saxena, S.; Matsui, J.; Sugimoto, N. Chem. Commun. 2011, 47, 2790.
    (100) McLuckie, K. I.; Waller, Z. A.; Sanders, D. A.; Alves, D.; Rodriguez, R.; Dash, J.; McKenzie, G. J.; Venkitaraman, A. R.; Balasubramanian, S. J. Am. Chem. Soc. 2011, 133, 2658.
    (101) Hansel, R.; Lohr, F.; Foldynova-Trantirkova, S.; Bamberg, E.; Trantirek, L.; Dotsch, V. Nucleic Acids Res. 2011, doi:10.1093/nar/gkr174.

    下載圖示
    QR CODE