簡易檢索 / 詳目顯示

研究生: 李沐暄
Lee, Mu-Xuan
論文名稱: 混合二維層狀材料對室溫下NO₂氣體感測研究
Study on Mixed 2D Layered Materials for NO₂ Gas Sensing at Room Temperature
指導教授: 廖書賢
Liao, Shu-Hsien
李敏鴻
Lee, Min-Hung
口試委員: 廖書賢
Liao, Shu-Hsien
李敏鴻
Lee, Min-Hung
鍾朝安
Jong, Chao-An
口試日期: 2025/01/08
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 67
中文關鍵詞: 氣體感測器水熱法二硫化鉬碳化鈦
英文關鍵詞: gas sensor, hydrothermal technology, MoS2, MXene(Ti3C2)
研究方法: 實驗設計法
論文種類: 學術論文
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空氣污染是目前全球最關注的環保議題之一,對人類健康、生態系統和氣候造成不利影響。如NO₂、NO、N₂O、NH₃和CO₂等,這些主要由工廠和汽車所排放的氣體,會增加罹患呼吸系統疾病的風險。其中,NO₂是一種眾所周知的有害氣體,對其識別與濃度測量非常重要。當NO₂濃度超過0.053 ppm時,過度暴露有可能會使呼吸道系統受損。因此,能夠準確檢測低濃度NO₂氣體,對於人類健康和環境保護至關重要。
    二維材料具有高比表面積與豐富的表面活化反應點,是作為氣體感測材料不錯的研究對象,其中,具半導體特性的MoS2是目前討論最多的感測材料之一,據文獻結果顯示,室溫下,以MoS2作為感測NO2材料時,由於感測響應訊號過低,感測響應時間與重新回復時間也太長,甚至往往需要適當升溫,才能感測到較低濃度與得到較好的感測結果。因此,本研究通過在二硫化鉬 (MoS₂)中加入MXene形成混合粉末,來做為感測器的材料。 MXene 也是一種二維材料,其高比表面積、高導電性和豐富的表面官能團,能夠有效提升電子傳導和氣體吸附能力,藉以改善MoS2材料在低濃度狀態下很好的感測性能。
    該材料合成流程簡單,透過不同水熱氧化溫度與混合比例的變化,找到最佳的製作條件,形成最佳的異質混合結構。從材料分析的結果明顯看到層狀結構經過水熱氧化法後,MXene表面的官能團鍵結從Ti-OH轉換成富含Ti-O鍵結狀態,而非形成TiO2,即C-Ti-O的形式。加入MXene同時提升MoS2混合粉末的導電性,且隨著MXene濃度的增加。導電度也隨之增加。
    從孔隙度分析的結果,加入MXene後形成的異質結構,使感測材料整體的比表面積提升達4倍以上,吸收氣體量也大幅增加。在NO2 10ppm條件下, MoS2中加入MXene可以使感測響應從原本的2% 提升到8%;另一方面,可感測的最低濃度值也從純MoS2 的3ppm下降到 0.05 ppm,即50ppb。室溫下感測50 ppb最快響應時間與回復時間僅分別需要100秒與136秒,經過多次循環感測實驗,此混合材料展現優異的可重複性與穩定性。

    Air pollution is one of the most pressing environmental issues globally. When concentrations of harmful substances in the atmosphere exceed natural levels, they can negatively impact human health, ecosystems, and climate. These pollutants may include gases, particulate matter, or biological contaminants. Exposure to gases such as NO₂, NO, N₂O, NH₃, and CO₂—primarily emitted by factories and vehicles—increases the risk of respiratory diseases. Among these gases, NO₂ is a well-known harmful pollutant, making its detection and measurement crucial. When NO₂ concentrations exceed 0.053 ppm, prolonged exposure may lead to respiratory system damage. Therefore, accurate detection of NO₂ at low concentrations is essential for both human health and environmental protection.
    Two-dimensional (2D) materials, characterized by their high surface area and abundant surface-active sites, are promising candidates for gas sensing. MoS₂, a semiconductor material, is commonly studied for this purpose. However, according to existing research, using MoS₂ as a sensing material for NO₂ at room temperature often results in low sensing response signals, long response and recovery times, and frequently requires heating to achieve effective detection at low concentrations. In this study, we address these limitations by incorporating MXene into MoS₂ to form a composite powder. MXene, also a 2D material, offers high surface area, excellent conductivity, and abundant surface functional groups, enhancing electron transport and gas adsorption capabilities, which in turn stabilizes sensing performance even at low NO₂ concentrations.
    The synthesis process is simple. By adjusting hydrothermal oxidation temperatures and mixing ratios, optimal fabrication conditions were determined, leading to the formation of an ideal heterogeneous composite structure. Material analysis results show that after hydrothermal oxidation synthesis, the surface functional group of MXene transited from Ti-OH to Ti-O rich bonds. Adding MXene also enhances the composite film’s conductivity. The more MXene concentration was added the higher current was observed. Porosity analysis indicates that adding MXene not only increases the materials’ specific surface area by more than four times but also enhances the amount of gas absorption capability. Sensing response at a concentration of 10 ppm improved from 2% to 8%. Furthermore, the lowest detection limit obviously improved from 3 ppm to 0.05 ppm. That is, 50 ppb. The response time and recovery time of 50ppb were to 100s and 136s, respectively. Finally, cyclic NO2 sensing testing demonstrated excellent repeatability and stability at room temperature.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第1章 緒論 1-1 氣體感測器介紹 1 1-2 NO2 感測技術發展 4 1-3 研究動機 5 第2章 文獻回顧 2-1 NO2感測材料發展 6 2-1-1 金屬氧化物 7 2-1-2 導電聚合物 7 2-1-3 碳奈米材料 7 2-1-4 二維半導體材料 8 2-2 MoS2 8 2-3 MXene 11 2-4 高壓氧化MoS2 與MXene (溫度170oC) 17 2-5 高壓氧化MoS2 與MXene (溫度220oC) 19 第3章 實驗裝置與分析儀器 3-1 試片製備 21 3-2 試片製備 22 3-2-1 試片表面處理 22 3-2-2 金屬沉積製程 22 3-2-3 混合過渡金屬MoS2與MXene 複合材料 22 233-3 分析儀器介紹 23 3-3-1 顯微拉曼光譜儀 23 3-3-2 微觀富氏轉換紅外線儀 24 3-3-3 X光光電子能譜儀 25 3-3-4 X光繞射儀 26 3-3-5 熱場發射掃描式電子顯微鏡 27 3-3-6 BET 28 第4章 結果與討論 4-1 材料分析 29 4-1-1 SEM/EDS 29 4-1-2 XRD 37 4-1-3 Raman 39 4-1-4 FTIR 40 4-1-5 XPS 41 4-1-6 BET 45 4-2 電性分析 51 4-2-1 I-V 50 4-2-2 Gas sensing 51 第5章 總結與未來展望 5-1 結論 59 5-2 未來工作 60 References 61 Publications 67

    [1] https://market.us/report/gas-sensor-market/
    [2] Abhay V. Agrawal1, Naveen Kumar1, Mukesh Kumar1, “Strategy and Future Prospects to Develop Room‑Temperature‑Recoverable NO2 Gas Sensor Based on Two‑Dimensional Molybdenum Disulfide” Nano-Micro Lett, v. 13, 38 (2021)
    [3] https://www.sanlien.com.tw/
    [4] Li-Yan Yang, Ting-Syun Ken, Wenjea J, Tseng, “Introduction of Solid-state Gas Sensor”, Instruments Today, v. 218, 108 (2009)
    [5] https://www.draeger.com/zh_tw/Home
    [6] https://www.draeger.com/zh_tw/Home
    [7] https://www.sanlien.com.tw/
    [8] Sankar Ganesh Ramaraj, Srijita Nundy, Pin Zhao, Durgadevi Elamaran, Asif Ali Tahir, Yasuhiro Hayakawa, Manoharan Muruganathan, Hiroshi Mizuta, and Sang-Woo Kim, “RF Sputtered Nb-Doped MoS2 Thin Film for Effective Detection of NO2 Gas Molecules: Theoretical and Experimental Studies”, ACS Omega, v.7, 10492 (2022)
    [9] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi et al., “Single-layer MoS2 phototransistors”, ACS Nano., v. 6, 74 (2012)
    [10] Angga Hermawan, Ni Luh Wulan Septiani, Ardiansyah Taufik, Brian Yuliarto, Suyatman, Shu Yin, “Advanced Strategies to Improve Performances
    of Molybdenum‑Based Gas Sensors”, Nano-Micro Lett., v. 13, 207 (2021)
    [11] Sunil Kumar, Gang Meng, Prabhash Mishra, Nishant Tripathi, Alexander. Bannov, “A systematic review on 2D MoS2 for nitrogen dioxide (NO2) sensing at room temperature”, Materials Today Communications, v. 34, 105045 (2023)
    [12] Maurizio Donarelli and Luca Ottaviano, “2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene”, Sensors, v. 18, 3638 (2018)
    [13] Sang Woo Lee, Ping Ping Tsai, Haydn Chen, “Comparison study of SnO2 thin- and thick-film gas sensors”, Sens. Actuators B, v. 67, 1–2, 10 (2000)
    [14] Carrotta M.C., Cervi A., diNatale V., Gherardi S., Giberti A., Guidi V., Puzzovio D., Vendemiati B., Martinelli G., Sacerdoti M., et al., “ZnO gas sensors: A comparison between nanoparticles and nanoterapods—Based thick films”, Sens. Actuators B, v. 137, 164 (2009)
    [15] Giberti A., Carotta M.C., Malagu C., Aldao M.S., Ponce M.A., Parra R., “Permittivity measurements in nanostructured TiO2 gas sensors”, Phys. Status Solidi A, v. 208, 118 (2011)
    [16] Mirzaei A., Hashemi B., Janghorban K., Electron, “Fe2O3 based nanomaterials as gas sensors”, J. Mater. Sci. Mater., v. 27, 3109 (2016)
    [17] Urasinska-Wojcik B., Vincent T.A., Chowdhury M.A., Gardner J.W., “Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment”, Sens. Actuators B, v. 239, 1051 (2017)
    [18] Volanti D.P., Felix A.A., Orlandi M.O., Whitfield G., Yang D.-J., Longo E., Tuller H.L., Varela J.A., “The role of hierarchical morphologies in the superior gas sensing performance of CuO-based chemiresistors”, Adv. Funct. Mater, v. 23, 1759 (2013)
    [19] Yu Y., Xia Y., Zeng W., Liu R., “Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance”, Mater. Lett, v. 206, 80 (2017)
    [20] Pokhrel S., Simion C.E., Quemener V., Barsan N., Weimar U., “Investigations of conduction mechanism in Cr2O3 gas sensing thick films by ac impedance spectroscopy and work function changes measurements”, Sens. Actuators B, v. 113, 78 (2008)
    [21] Yoon J.W., Kim H.J., Jeong H.M., Lee J.H., “Gas sensing characteristics of p-type Cr2O3 and Co3O4 nanofibers depending on inter-particle connectivity”, Sens. Actuators B, v. 202, 263 (2014)
    [22] Bai H., Shi G., “Gas sensors based on conducting polymers”, Sensors, v. 7, 267 (2007)
    [23] Dai J., Obeide O., Macadam N., Sun Q., Yu W., Li Y., Su B.-L., Hasan T., Huang X., Huang W., “Printed gas sensors”, Chem. Rev., v. 49, 1756 (2020)
    [24] Wang Y. Yeow J.T.W., “Areviewof carbon nanotubes—Based gas sensors”, J. Sens., v. 2009, 493904 (2009)
    [25] Mao S., Lu G., Chen J., “Nanocarbon-based gas sensors: Progress and challenges”, J. Mater. Chem. A, v. 2, 5573. (2014)
    [26] Majumdar S., Nag P., Devi P.S., “Enhanced performance of CNT/SnO2 thick film gas sensors towards hydrogen”, Mater. Chem. Phys., v. 147, 79 (2014)
    [27] Tang S., Chen W., Zhan H., Song Z., Li Y., Wang Y., “The functionalized single-walled carbon nanotube gas sensor with Pd nanoparticles for hydrogen detection in high-voltage transformers”, Front. Chem., v. 8, 174 (2020)
    [28] Lee E., Vahid Mohammadi A., Yoon Y.S., Beidaghi M., Kim D.J., “Two dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward non polar gases”, ACS Sens., v. 4, 1603 (2019)
    [29] Lu G., Ocola L.E., Chen J., “Reduced graphene oxide for room-temperature gas sensors”, Nanotechnology, v. 20, 445502 (2009)
    [30] Liu Z., Lv H., Xie Y. Wang J., Fan J., Sun B., Jiang L., Zhang Y., Wang R., Shi K., “A 2D/2D/2D Ti3C2Tx@TiO2@MoS2 Heterostructure as an Ultrafast and High Sensitivity NO2 Gas Sensor at Room-Temperature”, J. Mater. Chem., v. 10,
    11980 (2022)
    [31] Michael Naguib, Vadym N. Mochalin, Michel W. Barsoum, and Yury Gogotsi., “25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials”, Adv. Mater., v. 26, 992 (2014)
    [32] P.V. Hlophe, L.C. Mahlalela, L.N. Dlamini, “A composite of platelet-like orientated BiVO4 fused with MIL-125(Ti): Synthesis and characterization”, Sci Rep, v.9, 13 (2019)
    [33] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor”, Phys. Rev. Lett., v.105, 136805 (2010)
    [34] S.-Y. Cho, S.J. Kim, Y. Lee, J.-S. Kim, W.-B. Jung et al., “Highly enhanced gas adsorption properties in vertically aligned MoS2 layers”, ACS Nano., v. 9, 9314 (2015)
    [35] S. Zhang, J. Liu, K.H. Ruiz, R. Tu, M. Yang et al., “Morphological evolution of vertically standing molybdenum disulfide nanosheets by chemical vapor deposition”, Materials., v. 11, 631 (2018)
    [36] D. Jariwala, V.K. Sangwan, D.J. Late, J.E. Johns, V.P. Dravid et al., “Band-like transport in high mobility unencapsulated single-layer MoS2 transistors”, Appl. Phys. Lett., v. 102, 173107 (2013)
    [37] D. Jariwala, V.K. Sangwan, D.J. Late, J.E. Johns, V.P. Dravid et al., “Band-like transport in high mobility unencapsulated single-layer MoS2 transistors”, Appl. Phys. Lett., v. 102, 173107 (2013)
    [38] K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro- Neto, “2D materials and van der Waals heterostructures”, Science, v. 353, 9439 (2016)
    [39] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis., “Single-layer MoS2 transistors”, Nat. Nano technol., v. 6, 147 (2011).
    [40] D.J. Late, Y.-K. Huang, B. Liu, J. Acharya, S.N. Shirodkar et al., “Sensing behavior of atomically thin-layered MoS2 transistors”, ACS Nano. v. 7, 4879 (2013)
    [41] Q. Yue, Z. Shao, S. Chang, J. Li, “Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field”, Nanoscale Res., v. 8, 425 (2013)
    [42] H. Long, A. Harley-Trochimczyk, T. Pham, Z. Tang, T. Shi et al., “High surface area MoS2/ graphene hybrid aerogel for ultrasensitive NO2 detection”, Adv. Funct. Mater., v. 26, 5158 (2016)
    [43] A.J. Cohen, P. Mori-Sánchez, W. Yang, “Challenges for density functional theory”, Chem. Rev., v. 112, 289 (2012)
    [44] Qixun Xia, Yulong Fan, Shiwen Li, Aiguo Zhou, Nanasaheb Shinde, Rajaram S. Mane., “MXene-based chemical gas sensors: Recent developments and challenges”, Diamond & Related Materials., v. 131, 109557 (2023).
    [45] Siwei Liu, Mingyuan Wang, Guiwu Liu, Neng Wan, Chuanxin Ge, Shahid Hussain, Haining Meng, Mingsong Wang, Guanjun Qiao. “Enhanced NO2 gas-sensing performance of 2D Ti3C2/TiO2 nanocomposites by in-situ formation of Schottky barrier”, Applied Surface Science., v. 567, 150747 (2021).
    [46] Riya Alice B. John, Karthikeyan Vijayan, Ni Luh Wulan Septiani, Andri Hardiansyah, A Ruban Kumar, Brian Yuliarto and Angga Hermawan, “Gas-Sensing Mechanisms and Performances of MXenes and MXene-Based Heterostructures”, Sensors., v. 23, 8674 (2023)
    [47] Linh Chi T. Cao, P.-S. Chen, Y.-H. Lin, Yuki Nagao, Sakoolkan Boonruang, Chao-An Jong, Shu-Han Hsu, “Ti3C2Tx/MoO3 composite as an ultrasensitive and selective sensing material for a room-temperature nitrogen dioxide sensor”, Applied Surface Science., v. 676 161025. (2024)
    [48] H. Jing, H. Yeo, B. Lyu, J. Ryou, S. Choi, J.H. Park, B.H. Lee, Y.H. Kim, S. Lee, “Modulation of the electronic properties of MXene (Ti3C2Tx) via surface-covalent functionalization with diazonium”, ACS Nano., v. 15 (2021)
    [49] T. Schultz, N.C. Frey, K. Hantanasirisakul, S. Park, S.J. May, V.B. Shenoy, Y. Gogotsi, N. Koch, “Surface termination dependent work function and electronic properties of Ti3C2Tx MXene”, Chem. Mater., v. 31 (2019)
    [50] D.B. Patil, V.L. Patil, S.S. Patil, T.D. Dongale, N.D. Desai, P.R. Patil, R.M. Mane, P. N. Bhosale, P.S. Patil, P.M. Kadam, K.V. Khot, “Facile synthesis of MoO3 nanoplates based NO2 gas sensor: ultra-selective and sensitive”, Chem. Phys. Lett., v. 782 (2021)
    [51] W. Li, K. Xing, P. Liu, C. Chuang, Y.R. Lu, T.S. Chan, T. Tesfamichael, N. Motta, D. C. Qi, “Ultrasensitive NO2 gas sensors based on layered α-MoO3 nanoribbons”, Adv. Mater. Technol., v. 7 (2022)
    [52] D. Kwak, M. Wang, K.J. Koski, L. Zhang, H. Sokol, R. Maric, Y. Lei, “Molybdenum trioxide (α-MoO3) nanoribbons for ultrasensitive ammonia (NH3) gas detection: integrated experimental and density functional theory simulation studies”, ACS Appl. Mater. Interfaces, v. 11 (2019)
    [53] X. Liu, H. Zhang, Y. Song, T. Shen, J. Sun, “Facile Solvothermal synthesis of ZnO/ Ti3C2Tx MXene nanocomposites for NO2 detection at low working temperature”, Sensors & Actuators: B. Chemical, v. 367 (2022)
    [54] Haineng Bai a, Hui Guo a, Cheng Feng b, Jin Wang c, Bin Liu a, Zili Xie a, Fuqiang Guo b, Dunjun Chen a, Rong Zhang a, Youdou Zheng., “Light-activated ultrasensitive NO2 gas sensor based on heterojunctions of CuO nanospheres/MoS2 nanosheets at room temperature”, Sensors & Actuators: B. Chemical, v. 368, 132131 (2022)
    [55] Y.S. Xu, J.Y. Xie, Y.F. Zhang, F.H. Tian, C. Yang, W. Zheng, X.H. Liu, J. Zhang, N. Pinna, “Edge enriched WS2 nanosheets on carbon nanofibers boosts NO2 detection at room temperature” J. Hazard. Mater. v. 411, 125120 (2021)
    [56] P.J. Cao, Y.Z. Cai, D. Pawar, S.T. Navale, C.N. Rao, S. Han, W.Y. Xu, M. Fang, X. K. Liu, Y.X. Zeng, W.J. Liu, D.L. Zhu, Y.M. Lu, “Down to ppb level NO2 detection by ZnO/rGO heterojunction based chemiresistive sensors” Chem. Eng. J. v. 401, 125491 (2020)
    [57] M. Ikram, L.J. Liu, Y. Liu, M. Ullah, L.F. Ma, S.H. Bakhtiar, H.Y. Wu, H.T. Yu, R. H. Wang, K.Y. Shi, “Controllable synthesis of MoS2@MoO2 nanonetworks for enhanced NO2 room temperature sensing in air” Nanoscale, v. 11 8554. (2019)
    [58] Hao Yan, Lihua Chu, Ze Li, Changxu Sun, Yuxin Shi, Jing Ma., “2H-MoS2/Ti3C2Tx MXene composites for enhanced NO2 gas sensing properties at room temperature. Sensors and Actuators Reports” v. 4 100103 (2022)
    [59] D.J. Late, Y.-. K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J.L.A. Yan, et al.,
    “Sensing behavior of atomically thin-layered MoS2 transistors” ACS Nano. v. 7
    4879 (2013)
    [60] https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0020
    [61] https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0016
    [62] https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0015
    [63] https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0008
    [64] https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0009
    [65] Abhay V. Agrawal, Naveen Kumar, Mukesh Kumar., “Strategy and Future Prospects to Develop Room‑Temperature‑Recoverable NO2 Gas Sensor Based on Two‑Dimensional Molybdenum Disulfide, Nano-Micro Lett” v. 13, 38 (2021)
    [66] Le V.T., Vasseghian Y., Doan V.D., Nguyen T.T.T.; Thi Vo T.-T., Do H.H., Vu K.B., Vu Q.H., Dai Lam T., Tran V.A., “Flexible and High-Sensitivity Sensor Based on Ti3C2–MoS2 MXene Composite for the Detection of Toxic Gases” Chemosphere, v. 291, 133025 (2022).
    [67] Luo L. Shi M. Zhao S. Tan W. Lin X. Wang H., Jiang, F. “Hydrothermal Synthesis of MoS2 with Controllable Morphologies and Its Adsorption Properties for Bisphenol” A. J. Saudi Chem. Soc., v.23, 762 (2019).
    [68] Huaijie Cao, Ding-Bang Xiong. “Preparation of diamond/copper composites modified by Ti3C2Tx as interlayer with enhanced thermal conductivity” Diamond & Related Materials, v.118, 108504 (2021)
    [69] Yingying Jian, Danyao Qu, Lihao Guo, Yujin Zhu, Chen Su, Huanran Feng, Guangjian Zhang, Jia Zhang, Weiwei Wu, Ming-Shui Yao. “The prior rules of designing Ti3C2Tx MXene-based gas sensors” Sci. Eng., v.15 505 (2021).
    [70] Matthias Thommes, Katsumi Kaneko, Alexander V. Neimark, James P. Olivier,Francisco Rodriguez-Reinoso, Jean Rouquerol and Kenneth S.W. Sing., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)” Chem. aop (2015)

    下載圖示
    QR CODE