簡易檢索 / 詳目顯示

研究生: 陳建廷
Chien-Ting Chen
論文名稱: 適用於高速菲涅耳轉換之積體電路架構設計
Efficient VLSI Architecture for Fresnel Transform
指導教授: 黃文吉
Hwang, Wen-Jyi
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: 系統晶片設計FPGA菲涅耳轉換
論文種類: 學術論文
相關次數: 點閱:183下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要提出一硬體架構實現高速菲涅耳轉換,透過本硬體架構可還原全像片的相位值,後續再進行相位展開法則計算即可重建出物體實際樣貌。為了提高精確度,本硬體電路中大多使用IEEE 754浮點數格式進行運算,運算單元內部皆以管線化架構的方式實現,並且利用最佳排程將各運算單元之計算以平行的方式進行,有效提高菲涅耳轉換整體電路的運算效率,最後將此電路實現於FPGA開發平台並實際量測硬體資源消耗、運算時間以及功率消耗,透過硬體運算結果與軟體運算結果相互驗證確認還原結果正確。根據實驗結果,本論文提出之硬體架構有高精確度、高速運算以及低功率消耗之優點,對於現今要求即時運算的嵌入式數位全像系統,本論文所提出之硬體架構較具有競爭力。

    中文摘要............................................i 誌謝...............................................ii 目錄..............................................iii 附表目錄............................................v 附圖目錄..........................................vii 第一章 緒論.......................................1 1.1 研究背景與動機目的................................1 1.2全文架構.........................................3 第二章 基礎理論及技術背景介紹........................4 2.1 菲涅耳轉換運算流程...............................4 2.2討論菲涅耳轉換及相位展開於數位全像顯微鏡之應用.........8 2.3 FPGA系統設計...................................10 第三章 系統架構...................................13 3.1 Architecture I及Architecture II之基本架構.......13 3.1.1 前轉換單元(Pre-transform Unit)................14 3.1.2 快速傅立葉轉換單元(FFT Unit)...................18 3.1.3 後轉換單元(Post-transform Unit)...............21 3.2 Architecture I及Architecture II之排程...........29 3.2.1 Architecture I之排程.........................29 3.2.2 Architecture II之排程.........................30 3.3 軟硬體共同設計...................................31 第四章 實驗數據與效能比較...........................33 4.1 開發平台與實驗環境介紹............................33 4.2 實驗數據的呈現與討論..............................36 第五章 結論.......................................67 參考著作............................................68

    [1] D. Gabor, “A new microscopic principle,” Nature ,vol.161, pp.777-778, 1948.
    [2] E. Cuche, P. Marquet and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel of-axis holograms,” Appl. Opt., vol. 38, pp. 6994–7001, 1999.
    [3] M. Born and E. Wolf, Principles of optics, Cambridge University Press, 1999.
    [4] H. Oberst, D. Kouznetsov, K. Shimizu, J. Fujita, and F. Shimizu, “Fresnel diffraction mirror for atomic wave,” Phys. Rev. Lett., vol. 94, no.013203, 2005.
    [5] R. C. MacLaurin, Light, Columbia University Press, 1909.
    [6] N. Pandey, D. P. Kellya, T. J. Naughtona and B. M. Hennellya, “Speed up of Fresnel transforms for digital holography using precomputed chirp and GPU processing,” Proc. SPIE, vol. 7442, 2009.
    [7] Z. Zhu, M. Sun, H. Ding, S. Feng, and S. Nie, “Fast numerical reconstruction of digital holography based on graphic processing unit,” Pacific Rim Conference on Lasers and Electro-Optics, 2009.
    [8] T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express, vol. 16, pp. 11776-11781, 2008.
    [9] T. Nishitsuji, T. Shimobaba, T. Sakurai, N. Takada, N. Masuda, and T. Ito, “Fast calculation of Fresnel diffraction calculation using AMD GPU and OpenCL”, Digital Holography and Three-Dimensional Imaging, OSA Techinal Digest Optical Society of America, 2011.
    [10] N. Masuda, T. Ito, K. Kayama, H. Kono, S. Satake, T. Kunugi, and K. Sato, “Special purpose computer for digital holographic particle tracking velocimetry,” Opt. Express, vol. 14, pp. 587-592, 2006.
    [11] 莊子昕, 以菲涅耳轉換及相位展開為基礎之數位全像顯微鏡在FPGA上之實現, 國立臺灣師範大學資訊工程研究所, 2012.
    [12] S. Hauck and A. Dehon, Reconfigurable Computing, Morgan Kaufmann, 2008.
    [13] Stratton, Julius Adams: Electromagnetic Theory, McGraw-Hill, Reissued by Wiley IEEE Press, ISBN 978-0-470-13153-4, 1941.
    [14] S. Rajan, S. Wang, R. Inkol, A. Joyal, “Efficient Approximations for the Arctangent Function,” IEEE Signal Processing Magazine, vol. 23 pp. 108-111, 2006.
    [15] J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. vol. 11, pp. 77–79, 1967.
    [16] Altera Corporation, FFT MegaCore Function User Guide, 2011.
    [17] Altera Corporation, Floating Point Mega Function User Guide, 2011.
    [18] Altera Corporation, NIOS II Processor Reference Handbook, 2011.
    [19] S. Collange, D. Defour, and A. Tisserand, “Power consumption of GPUs from a software perspective,” International Conference on Computational Science, vol. 5544, pp. 922-931, 2009.

    下載圖示
    QR CODE