研究生: |
陳亞寧 Ya-Ning Chen |
---|---|
論文名稱: |
以關鍵字使用分析探討社會標記者與索引專家的文獻標引心智模式 A Study on Mental Models of Taggers and Professional Indexers for Article Indexing Based on Analysis of Keyword Usage |
指導教授: |
柯皓仁
Ke, Hao-Ren |
學位類別: |
博士 Doctor |
系所名稱: |
圖書資訊學研究所 Graduate Institute of Library and Information Studies |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 154 |
中文關鍵詞: | 社會標記 、控制詞彙 、標引 、心智模式 、社會網路分析 、頻繁項目樣式成長 |
英文關鍵詞: | social tags, controlled vocabularies, indexing, mental models, social network analysis, frequent pattern growth |
論文種類: | 學術論文 |
相關次數: | 點閱:277 下載:36 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著Web 2.0的廣泛應用,各式社會網路平台提供了社會標記的功能,讓社會標記者以自由形式的關鍵字組織各式資訊。在圖書資訊學界方面,資訊組織的權威控制與索引典控制係以一種控制詞彙的方式標引資訊的內容屬性。無論是社會標記者或是圖書資訊學界的索引專家皆將關鍵字視為一種觀念,且依其先備經驗與知識,經由關鍵字以表徵其對資訊內容所認知的理解與心智模式。現有的研究皆著重在以個別的關鍵字為研究對象,包括關鍵字的來源與使用情形,以及社會標記與控制詞彙間關鍵字的重複情形等,並未具體提出完整的文獻標引心智模式地圖,而是零散、片斷且沒有任何關聯關係的文獻標引心智模式。如果可以更瞭解社會標記者與索引專家的心智模式及其差異,即可選用更適當的關鍵字組織各項資訊資源,進而促成資源的發掘,導引使用者找到所需的資訊。
本研究旨在以關鍵字的使用分析,探討社會標記者與索引專家的文獻標引心智模式。在樣本資料方面,本研究選取13種圖資期刊中1,489篇文獻的社會標記與控制詞彙等關鍵字為樣本,包括CiteULike的3,972個社會標記(1,672個不重複標記)與LISA的6,708個控制詞彙(1,338個控制詞彙)。在研究方法則是計算關鍵字的使用情形外,還包括社會網路分析與頻繁樣式成長法(含頻繁樣式樹)等方法討論隱藏在關鍵字間的關聯關係結構與樣式。從關鍵字的使用情形、冪次定律分佈、社會標記與控制詞彙間的關鍵字比對、社會網路分析(包括:中心度、階層集叢、同等角色)及頻繁樣式成長等方面而言,結果顯示社會標記者與索引專家間的文獻標引心智模相似度並不高,主要的研究結果如下:
1.社會標記者的文獻標引心智模式比索引專家更為多元化。
2.社會標記者直接從文獻題名中選用關鍵字的傾向高於索引專家。
3.社會標記與控制詞彙間的相同程度不高且彼此互補。
4.社會標記者不經常單獨使用內容群組的關鍵字類別及其所擁有的關鍵字,卻經常與題名主題群組的關鍵字類別及其所擁有的關鍵字一起搭配使用。索引專家雖然不常單獨使用其他群組的關鍵字類別及其所擁有的關鍵字作為文獻標引之用,卻常與題名、主題與內容等群組及其所擁有的關鍵字一起搭配使用。
5.社會標記者傾向交替使用較多組的關鍵字類別及其擁有的關鍵字,而且每組幾乎是由兩種不同的關鍵字類別所組成。然而,索引專家則是傾向交替較少組的關鍵字類別及其擁有的關鍵字,且每組幾乎是由兩種以上不同的關鍵字類別所組成(即2、3與7種)。
6.社會標記者傾向使用較少的FP-tree規則且較少的關鍵字類別進行文獻標引,而索引專家則是傾向使用較多的FP-tree規則且較多的關鍵字類別,組織各式資訊資源。
基於前述的研究結果,本研究貢獻主要有五項:發展文獻標引的心智模式、分析文獻標引心智模式地圖及其結構與樣式、分析關鍵字的使用情形及其共同出現的關聯關係特質、從心智模式解釋社會標記與控制詞彙兩者互補現象的原因,及擴展標記類別模式(tag category model)的可行性驗證與應用解釋。研究結果亦可進一步應用在資訊系統的設計,包括關鍵字的推薦、使用者界面的設計及瀏覽分類架構的建立與運用。
With the wide application of Web 2.0, various social networking platforms allow taggers to use uncontrolled, free keywords (i.e., social tags) to organize information. In library and information science, professional indexers are guided by the principles of authority control and thesaurus control to organize information with controlled vocabularies. Both social taggers and professional indexers regard keywords as concepts that represent their cognitions and mental models of information content, according to their prior experience and knowledge. Existing studies have focused on examining the sources and usage of individual keywords, and comparing the similarity between tags and controlled vocabularies. However, the results of such studies only reflect scattered debris rather than a whole picture of the mental models used by social taggers and professional indexers for article indexing. A better understanding of the mental models of taggers and professional indexers and their usage gap may inspire better selection of appropriate keywords for organizing information, facilitating resource discovery, and guiding users to find the right information.
This study explores the mental models used by taggers and professional indexers to designate keywords for article indexing. Using a dataset of 3,972 CiteULike tags and 6,708 Library and Information Science Abstracts (LISA) descriptors from 1,489 scholarly articles in 13 library and information science journals, this study attempts to analyze the keyword usage of taggers and professional indexers to capture and build up their mental models for article indexing, and generalize their structures and patterns. To achieve this end, in this study social network analysis and frequent-pattern growth methods were employed. When measured with respect to terms used, power law distribution, a comparison of terms used as tags and descriptors, social network analysis (including centrality, overall structure and role equivalence) and frequent-pattern growth analysis (including frequent-pattern tree), little similarity was found between the mental models of taggers and professional indexers in article indexing.
The results of this study are summarized as follows:
Taggers’ mental models for article indexing are more diverse than those of professional indexers.
Social taggers have a higher preference than professional indexers to select terms for article indexing from title keywords.
There is little similarity between social tags and controlled vocabularies and they complement each other.
Keywords in content-related categories were not used independently by social taggers, but they were often used with those from topic-related categories. On the other hand, keywords of other-related categories were often co-used with those of title-, topic- or content-related categories by professional indexers.
Social taggers may prefer to assign co-occurring keywords with more sets of fewer facets’ viewpoints (almost always two-facets); however, professional indexers may be inclined to offer keywords with fewer sets of more facets’ viewpoints (i.e., two-, three- and seven-facets).
Social taggers may be inclined to assign keywords with fewer path-based rules comprising fewer keyword categories. Professional indexers may tend to offer keywords with more path-based rules comprising more keyword categories.
According to the research results mentioned above, the key contributions of this study are as follows:
Development of a generic model of mental models of social taggers and professional indexers for article indexing.
Analysis of the structures and patterns embedded in maps of mental models of social taggers and professional indexers in article indexing.
Analysis of the characteristics of keyword usage and co-occurring keywords’ associations.
Presentation of a theoretical basis to explain the reason why social tags complement controlled vocabularies.
Extension of the tag category model by feasibility examination and explanation.
Furthermore, the results of this study also inform the design of information systems, including term recommendations and user interfaces for indexing, as well as frequent-pattern based classification trees for browsing and navigation.
卜小蝶、張淇龍(2009)。社會性書籤網站之使用者與標籤特性初探。圖書資訊學研究。 4卷1期,頁1-26。
吳美美(1998)。網際網路資源組織的三個層次。大學圖書館。2卷1期,頁27-35。
李亞婷、馬費成(2012)。基於標籤共現的社會網路分析研究。情報雜誌。31卷7期,頁103-109。
陳和琴、張慧銖、江綉瑛與陳昭珍(2003)。資訊組織(初版)。臺北縣蘆洲市 : 國立空中大學。
圖書館自動化作業規劃委員會、中國編目規則研訂小組(研訂)、中華民國圖書館學會分類編目委員會(增修)(2005)。中國編目規則(第三版)。臺北市:中華民國圖書館學會。
Ahlstrom, V., & Allendoerfer, K. (2004). Information organization for a portal using a card-sorting technique. Retrieved 20 April, 2011 from http://hf.tc.faa.gov/technotes/dot-faa-ct-tn04-31.pdf
Anderson, J.D. (1997). NISO technical report 2 : Guidelines for indexes and related information retrieval devices. Bethesda, MD: NISO Press.
Angus, E., Thelwall, M., & Stuart, D. (2008). General patterns of tag usage among university groups in Flickr. Online Information Review, 32(1), 89-101.
Ansari, M. (2005). Matching between assigned descriptors and title keywords in medical theses. Library Review, 54(7), 410-414.
Bar-Ilan, J., Shoham, S., Idan, A., Miller, Y., & Shachak, A. (2008). Structured versus unstructured tagging: A case study. Online Information Review, 32(5), 635-647.
Belkin, N.J., Oddy, R.N., & Brooks, H.M. (1982). ASK for information retrieval: Part I. Background and theory. Journal of Documentation, 38(2), 61-71.
Bilal, D., & Wang, P. (2005). Children’s conceptual structures of science categories and the design of Web directories. Journal of the American Society for Information Science and Technology, 56(12), 1303-1313.
Bischoff, K., Firan, C. S., Nejdl, W., & Paiu, R. (2008). Can all tags be used for search? In Proceeding of the 17th ACM conference on Information and knowledge management (pp. 203-212). New York: ACM Press.
Blackwell, A.F. (1996). Metacognitive theories of visual programming : What do we think we are doing. In Proceedings of IEEE Symposium on Visual Languages(pp. 240-246).
Brookes, B.C. (1980). The foundations of information science: Part I. Philosophical aspects. Journal of Information Science, 2(3-4), 125-133.
Bruce, R. (2008). Descriptor and folksonomy concurrence in education related scholarly research. Webology, 5(3). Retrieved 26 July, 2011 from http://www.webology.org/2008/v5n3/a59.html
Carlyle, A. (1989). Matching LCSH and user vocabulary in the library catalog. Cataloging & Classification Quarterly, 10(1/2), 37-63.
Carvalho, M., Hewett, R., & Canas, A.J. (2001). Enhancing Web searches from concept map-based knowledge models. Proceedings of the SCI2001 5th Multi-Conference on Systems, Cybernetics and Informatics(pp. 1-5). Orlando, FL: International Institute of Informatics and Systematics. Retrieved 16 Novemember, 2012 from http://www.ihmc.us/users/acanas/Publications/ EnhancedWebSearches/Enhancing%20Web%20Searches%20from%20Concept%20Map-based%20Knowledge%20Models.pdf
Celma, Ò., Herrera, P., & Serra, X. (2005). Bridging the music semantic gap. Retrieved 22 December, 2012 from http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=B6C832AEFF8A42AE74BB4932EDC6D05F?doi=10.1.1.89.4319&rep=rep1&type=pdf
Chan, L.M., & Vizine-Goetz, D. (1998). Toward a computer-generated subject validation file: Feasibility and usefulness. Library Resources & Technical Services, 42(1), 45-60.
CiteULike. (n.d.). Frequently asked questions. Retrieved 8 May, 2012 from http://www.citeulike.org/faq/faq.adp
Cole, C., Lin, Y., Leide, J., Large, A., & Beheshti, J. (2007). A classification of mental models of undergraduates seeking information for a course essay in history and psychology: Preliminary investigations into aligning their mental models with online thesauri. Journal of the American Society for Information Science and Technology, 58(13), 2902-2104.
Cronin, B., & Meho, L.I. (2008). The shifting balance of intellectual trade. Journal of the American Society for Information Science and Technology, 59(4), 551–564.
de Abreu Moreira, D. (1998). Object oriented computing. Retrieved 22 December, 2012 from http://java.icmc.usp.br/books/ooc/html/object_oriented_programming_ semantic_gap.html
Eden, C. (1992). On the nature of cognitive maps. Journal of Management Studies 29(3), 261-265.
Fleiss J.L. (1981). Statistical methods for rates and proportions(2nd ed.). New York: Wiley.
Freeman, L.A. (2004). The effects of concepts maps on requirements elicitation and system models during information systems development. In A.J. Cañas, J.D. Novak, & F.M. González, (Eds.), Concept maps: Theory, methodology, technology. Proceedings of the 1st International Conference on Concept Mapping, Pamplona, Spain.
Frost, C.O. (1989). Title words as entry vocabulary to LCSH: Correlation between assigned LCSH terms and derived terms from titles in bibliographic records with implications for subject access in online catalogs. Cataloging & Classification Quarterly, 10(1-2), 165-179.
Gentner, D., & Stevens, A. (Eds.). (1983). Mental models. Hillsdale, NJ: Lawrence Erlbaum Associates.
Gilliland, A.J. (2008). Setting the stage(ver. 3.0). Retrieved 26 July, 2011 from http://www.getty.edu/research/publications/electronic_publications/intrometadata/setting.pdf
Golder, S. A., & Huberman, B. A. (2006). Usage patterns of collaborative tagging systems. Journal of Information Science, 32(2), 198-208.
Gorman, M., & Winkler, P. (Eds.).(1998). Anglo-American cataloging rules(2nd rev. ed.). Ottawa: Canadian Library Association.
Guerra, E., Sanz, D., Díaz, P., & Aedo, I. (2007). A transformation-driven approach to the verification of security policies in web designs. In ICWE'07 Proceedings of the 7th International Conference on Web Engineering(pp. 269-284). Retrieved 22 May, 2012 from http://astreo.ii.uam.es/~eguerra/papers/Guerra_2007_ICWE.pdf
Gwet, K.L. (2012). Handbook of inter-rater reliability(3rd ed.). Gaithersburg: Advanced Analystics, LLC.
Hanneman, R.A., & Riddle, M. (2005). Introduction to social network methods. Riverside, CA: University of California, Riverside. Retrieved 25 December, 2011 from http://faculty.ucr.edu/~hanneman/nettext/Introduction_to_Social_Network_Methods.pdf
Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data(pp. 1-12). New York, NY: ACM.
Haythornthwaite, C. (1996). Social network analysis: An approach and technique for the study of information exchange. Library and Information Science Research, 18(4), 323-342.
Haythornthwaite, C. (2009). Social networks and information transfer. In Encyclopedia of Library and Information Sciences(3rd ed., pp. 4837-4847). New York: Taylor and Francis.
Heckner, M., Mühlbacher, S., & Wolff, C. (2008). Tagging tagging: Analysing user keywords in scientific bibliography management systems. Journal of Digital Information, 9(2). Retrieved 26 July, 2011 from http://epub.uni-regensburg.de/ 6839/1/HeckneretalTaggingTaggingJoDI2008.pdf
Heery, R., & Patel, M. (2000). Application profiles: mixing and matching metadata schemas. Ariadne, 25. Retrieved 8 August, 2011 from http://www.ariadne.ac.uk/ issue25/app-profiles
Heymann, P., & Garcia-Molina, H. (2009). Contrasting controlled vocabulary and tagging: Do experts choose the right names to label the wrong things? In Proceedings of Second ACM International Conference on Web Search and Data Mining (WSDM ‘09). Retrieved 10 June, 2011 from http://www.wsdm2009.org/ heymann_2009_tagging.pdf
Heymann, P., Koutrika, G., & Garcia-Molina, H. (2008). Can social bookmarking improve web search? In Proceedings of the Second International Conference on Web Search and Web Data Mining (pp. 195-206). New York: ACM Press.
Holman, L. (2011). Millennial students’ mental models of search: Implications for academic librarians and database developers. Journal of Academic Librarianship, 37(1), 19-27.
Hotho, A., Jächke, R., Schmitz, C., & Stumme, G. (2006). Information retrieval in folksonomies: Search and ranking. In Proceedings of ESWC 2006. Retrieved 8 August, 2011 from http://www.kde.cs.uni-kassel.de/stumme/papers/2006/ hotho2006information.pdf
Huang, W., Li,, S.F., Tan, Y.J., & Gao, B. (2009). Association rules based short text feature extension. International Journal of Computer Science and Network Security, 9(10), 227-230.
Ingwersen, P. (1996). Cognitive perspective of information retrieval inter- action: Elements of a cognitive IR theory. Journal of Documentation, 52(11), 3-50.
Inskip, C., MacFarlane, A., & Rafferty, F. (2008). Meaning, communication, music: Towards a revised communication model. Journal of Documentation, 64(5), 687-706.
Iyer, H., & Bungo, L. (2011). An examination of semantic relationships between professionally assigned metadata and user-generated tags for popular literature in complementary and alternative medicine. Information Research, 16(3). Retrieved 16 September, 2011 from http://informationr.net/16-3/paper482.html
Johnson-Laird, P.N. (1989). Mental models. In M.I. Posner (Ed.). Foundations of Cognitive Science(pp. 469-499). Cambridge, MA: MIT Press.
Kearney, A.R., & Kaplan, S. (1997). Toward a methodology for the measurement of knowledge structures of ordinary people. Environment and Behavior, 29(5), 579-617. Retrieved 16 Novemember, from http://deepblue.lib.umich.edu/ bitstream/2027.42/66794/2/10.1177_0013916597295001.pdf
Kipp, M.E. (2006). Complementary or discrete contexts in online indexing: A comparison of user, creator and intermediary keywords. Retrieved 31 December, 2010 from http://eprints.rclis.org/bitstream/10760/8771/1/mkipp-caispaper.pdf
Kipp, M.E.I. (2011a). Tagging of biomedical articles on CiteULike: A comparison of user, author and professional indexing. Knowledge Organization, 38(3), 245-261.
Kipp, M.E.I. (2011b). User, author and professional indexing in context: An exploration of tagging practices on CiteULike. The Canadian Journal of Information and Library Science, 35(1), 17-48.
Landis, J.R., & Koch, G.G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174.
Lin, X., Beaudoin, J.E., Bui, Y., & Desai, K. (2006). Exploring characteristics of social classification. In J. Furner and J.T. Tennis. (Eds.), Proceedings of the 17th ASIS&T SIG/CR Classification Research Workshop. Retrieved 22 February, 2011 from http://faculty.cis.drexel.edu/~xlin/papers/ASIS200
Lu, C., Park, J., & Hu, X. (2010). User tags versus expert-assigned subject terms: A comparison of LibraryThing tags and Library of Congress subject headings. Journal of Information Science, 36(6), 763-779.
Marchionini, G. (1989a). Information-seeking strategies of novices: Using a full-text electronic encyclopedia. Journal of the American Society for Information Science, 40(1), 54-66.
Marchionini, G. (1989b). Making the transition from print to electronic encyclopaedias: Adaptation of mental models. International Journal of Man-Machine Studies, 30(6), 591-618.
Makri, S., Blandford, A., Gow, J., Rimmer, J., Warwrick, C., & Buchanan, G. (2007). A library or just another information resource: A case study of users’ mental models of traditional and digital libraries. Journal of the American Society for Information Science and Technology, 58(3), 433-445.
Marlow, C., Naaman, M., Body, D., & Davis, M. (2006). Position paper: Tagging, taxonomy, Flikr, article, toread. In Proceedings of the Collaborative Web Tagging Workshop at the WWW 2006. New York: ACM Press. Retrieved 30 December, 2010 from, http://www.danah.org/papers/WWW2006.pdf
Maron, M.E. (1977). On indexing, retrieval and the meaning of about. Journal of the American Society for Information Science, 28(1), 261-266.
Mathieu, J.E., Heffner, T.S., Goodwin, G.F., Cannon-Bowers, J.A., & Salas, E. (2005). Scaling the quality of teammates’ mental models: Equifinality and normative comparisons. Journal of Organizational Behavior, 26(1), 37-56.
Michell, G, & Dewdney, P. (1998). Mental models theory: Applications for library and information science. Journal of Education for Library and Information Science, 39(4), 275-281.
Mitchell, E. (n.d.). The role of information organization and metadata in digital documents. Retrieved 21 May, 2012 from http://erikmitchell.info/uploaded_files/ dissertation/2_inforg_metadata_mitchell.pdf
Mohammed, S., Ferzandi, L., & Hamilton, K. (2010). Metaphor no more: A 15-year review of the team mental model construct. Journal of Management, 36(4), 876-910.
Mohammed, S., Klimoski, R., & Rentsch, J.R. (2000). The measurement of team mental models: We have no shared schema. Organizational Research Methods, 3(2), 123-165.
Munk, T. B., & Mørk, K. (2007). Folksonomies, tagging communities, and tagging strategies: An empirical study. Knowledge Organization, 34(3), 115-127.
Newman, M.E.J. (2003). The structure and function of complex networks. Retrieved 03 November, 2010 from http://www-personal.umich.edu/~mejn/courses/2004/ cscs535/review.pdf
NISO. (2005). Guidelines for the construction, format, and management of monolingual controlled vocabularies. Bethesda, MD: NISO Press.
Norman, D.A. (1983). Some observations on mental models. In D. Gentner, & A. Stevens (Eds.). Mental models(pp. 7-14). Hillsdale, NJ: Lawrence Erlbaum Associates.
Pisanski, J., & Žumer, M. (2010a). Mental models of the bibliographic universe. Part 1: Mental models of descriptions. Journal of Documentation, 66(5), 643-667.
Pisanski, J., & Žumer, M. (2010b). Mental models of the bibliographic universe. Part 2: Comparison task and conclusions. Journal of Documentation, 66(5), 668-680.
Prebor, G. (2010). Analysis of the interdisciplinary nature of library and information science. Journal of Information Science, 42(4), 256–267.
ProQuest. (2009). LISA guide. Retrieve 8 May, 2012 from http://www.csa.com/ factsheets/supplements/LISAguide.pdf
Quintarelli, E. (2005). Folksonomies: Power to the people. Paper presented at ISKO Italy-UniMIB Meeting. Retrieve 28 October, 2010 from http://www.iskoi.org/doc/folksonomies.htm
Rafferty, P., & Hidderley, R. (2007). Flickr and democratic indexing: Dialogic approaches to indexing. Aslib Proceedings: New Information Perspectives, 59(4/5), 397-410.
Ravari, M.T. (2012). A statistical study on Persian subject headings development. International Journal of Information Science and Management, 10(1), 73-88. Retrieved 23 May, 2012 from http://www.ricest.ac.ir/ijist/Vol10N1/ ijism-V10N1_files/ijism101-73-88.pdf
Rentsch J.R., & Hall R.J. (1994). Members of great teams think alike: A model of team effectiveness and schema similarity among team members. In Advances in Interdisciplinary Studies of Work Teams, Vol. 1(pp. 223-261). Greenwich, CT: JAI Press.
Rentsch, J.R., & Klimoski, R.J. (2001). Why do great minds think alike: Antecedents of team member schema agreement. Journal of Organizational Behavior, 22(2), 107-120.
Rentsch, J. R., Small, E. E., & Hanges, P. J. (2008). Cognitions in organizations and teams: What is the meaning of cognitive similarity? In B. Smith (Ed.), The people make the place: Dynamic linkages between individuals and organizations. LEA's organization and management series(pp. 127-155). New York, NY: Taylor & Francis Group/Lawrence Erlbaum Associates.
Rolla, P.J. (2009). User tags versus subject heading: Can user-supplied data improve subject access to library collections? Library Resource & Technical Service, 53(3), 174-184.
Rorissa, A. (2010). A comparative study of Flickr tags and index terms in a general image collection. Journal of the American Society for Information Science and Technology, 61(11), 2230-2242.
Rouse, W.B., Cannon-Bowers, J.A., & Salas, E. (1992). The role of mental models in team performance in complex systems. IEEE Transactions on Systems, Man, & Cybernetics, 22(6), 1296-1308.
Schaffernicht, M., & Groesser, S. (2011). A comprehensive method for comparing mental models of dynamic systems. European Journal of Operational Research, 210(1), 57-67.
Sen, S., Lam, S. K., Rashid, A. M., Cosley, D., Frankowski, D., Osterhouse, J., Harper, M., & Riedl, J. (2006). Tagging, communities, vocabulary, evolution. In CSCW '06: Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work (pp. 181-190). New York: ACM Press.
Smith, G. (2008). Tagging: People-powered metadata for the social web. Berkeley, CA: New Riders.
Spalding, T. (2007). When tags work and when they don’t: Amazon and LibraryThing. Thingology Blog, Retrieved 30 December, 2011 from http://www.librarything.com/ thingology/2007/02/when-tags-works-and-when-they-dont.php
Spiteri, L. F. (2007). Structure and form of folksonomy tags: The road to the public library. Webology, 4(2). Retrieved 14 July, 2011 from http://www.webology.org/ 2007/v4n2/a41.html
Staggers, N., & Norcio, A.F. (1993). Mental models: Concepts for human-computer interaction research. International Journal of Man-Machine Studies, 38(4), 587-605.
Strader, R.C. (2009). Author-assigned keywords versus library of congress subject headings: Implications for the cataloging of electronic theses and dissertations. Library Resources and Technical Service, 53(4), 243-250.
Stvilia, B., & Jörgensen, C. (2010). Member activities and quality of tags in a collection of historical photographs in Flickr. Journal of the American Society for Information Science and Technology, 61(12), 2477-2489.
Sutton, S.A. (1994). The role of attorney mental models of law in case relevance determinations: An exploratory analysis. Journal of the American Society for Information Science, 45(3), 186-200.
Svenonius, E. (2000). The intellectual foundation of information organization. Cambridge, MA: MIT Press.
Thomas, M., Caudle, D.M., & Schmitz, C.M. (2009). To tag or not to tag? Library Hi Tech, 27(3), 411-434.
Toker, S. (2012). The mental model comparison of expert and novice performance improvement practitioners. Cambridge, UK: ProQuest, UMI Dissertation Publishing.
Vander Wal, T (2007). Folksonomy. Retrieved 08 May, 2012, from http://www.vanderwal.net/folksonomy.html
Voorbij, H.J. (1998). Title keywords and subject descriptors: A comparison of subject entries of books in the humanities and social science. Journal of Documentation, 54(4), 466-476.
Wang, P., & Soergel, D. (1998). A cognitive model of document use during a research project: Study I. Document selection. Journal of the American Society for Information Science, 49(2), 115-133.
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge, UK: Cambridge University Press.
Winn, W. (2001). Cognitive perspectives in psychology. In D.H. Jonassen (Ed.), Handbook of research for educational communications and technology(pp. 79-112). Bloomington, IN: AECT. Retrieved 16 May, 2011 from http://www.aect.org/edtech/ed1/04.pdf
Yang, Y., Wu, M., Cui, L. (2012). Integration of three visualization methods based on co-word analysis. Scientometrics, 90(2), 659-673.
Yeung, A.K. (1998). Information organization and data structure. Retrieved 02 January, 2013 from http://www.ncgia.ucsb.edu/giscc/units/u051/
Yi, K., & Chan, L.M. (2009). Linking folksonomy to Library of Congress subject headings: An exploratory study. Journal of Documentation, 65(6), 872-900.
Yuan, J., Wu, Y., & Yang, M. (2007). Discovery of collocation patterns: from visual words to visual phrases. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(pp. 1-8).
Zhang, J., Chen, C., & Li, J. (2009). Visualizing the intellectual structure with paper-reference matrices. IEEE Transaction on Visualizaton and Computer Graphics, 15(6), 1153-1160.
Zhang, X., & Chignell, M. (2001). Assessment of the effects of user characteristics on mental models of information retrieval systems. Journal of the American Society for Information Science and Technology, 52(6), 445-459.
Zhang, Y. (2008a). The influence of mental models on undergraduate students’ searching behavior on the web. Information Processing and Management, 44(3), 1330-1345.
Zhang, Y. (2008b). Undergraduate students’ mental models of the web as an information retrieval system. Journal of the American Society for Information Science and Technology, 59(13), 2087-2098.