簡易檢索 / 詳目顯示

研究生: 徐泓璋
論文名稱: MgB2超導薄膜研製與微橋製作
指導教授: 張秋男
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 76
中文關鍵詞: MgB2超導薄膜
論文種類: 學術論文
相關次數: 點閱:106下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    為了研製MgB2的微橋,利用磁控濺鍍及在自行設計的不銹鋼盒內作高溫退火,在Al2O3的基座上生成MgB2薄膜。目前所製得的最佳MgB2薄膜其超導臨界溫度(Tc)約為24 K,ΔT約為2 K,表面平坦度為8 nm。該等薄膜看起來有約500 nm結晶顆粒,但不具六角形晶粒。從X光繞射分析譜與硼的K-edge近緣X光吸收光譜確認目前的樣品為MgB2薄膜。
    利用紫外光微影蝕刻(UV-light lithography)製程製作線寬為3 μm與4 μm的MgB2微橋,由測量電阻率隨溫度變化曲線可見臨界溫度下降約3 K及ΔT變大至約5 K。
    使用電子束微影蝕刻(E-Beam lithography)製程製作出線寬為0.5 μm、10 μm與20 μm的MgB2微橋,同樣的也使用賓州大學製作的MgB2薄膜(Tc為41 K,ΔT~ 0.2 K),作出10 μm與20 μm的MgB2微橋。兩相比較,發現我們製作的薄膜,其Tc的下降及ΔT的變大均比賓州大學製作的來的差,可見得結晶顆粒的大小及樣品內雜質的多寡對蝕刻後的樣品品質有影響。就10 μm微橋的臨界電流密度(Jc)來作比較,發現我們樣品的Jc比賓州大學樣品的Jc來的差。

    ABSTRACT
    In order to fabricate a nano-bridge from MgB2 film, a MgB2 film was produced through RF sputtering and ex-situ annealing process, the film of MgB2 was grown on the Al2O3(1 02) substrate. The best film we obtained had superconducting transition temperature of 24 K with transition width ΔT ≒ 2 K. The root mean square roughness of the surface was found to be 8 nm. The average size of the crystalline grain was about 500 nm, yet no hexagonal shape could be observed. The identification of MgB2 phase in the film was confirmed by XRD measurement and boron K-edge X-ray absorption near-edge spectrum.
    Comparison of our film with the one that fabricated by using hybrid physical-chemical vapor deposition (HPCVD) method (Tc = 41 K and ΔT ≒ 0.2 K) was made for the change of Tc , ΔT and Jc after e-beam lithography. All of these quantities were observed to be worse for our film than the HPCVD film, possibly due to the impurity and less homogeneity of the film we produced.

    第一章 超導體MgB2簡介 1 第二章 利用溫度梯度製作MgB2薄膜製作流程與薄膜特性 3 2-1-1 射頻磁控濺鍍系統 5 2-1-2 射頻磁控濺鍍系統之薄膜成長及高溫退火處理 8 2-2 超導臨界溫度比較 11 2-3-1 X光粉末繞射儀原理簡介 12 2-3-2 X光粉末繞射儀(X-Ray Powder Diffractometer, XRD)分析 14 2-3-1 原子力顯微鏡(Atomic Force Microscope, AFM)簡介 16 2-3-2 原子力顯微鏡(Atomic Force Microscope, AFM)分析 19 2-5 近緣X光吸收光譜(X-ray Absorption Near Edge Structure ,XANES)分析 20 2-5-1 同步輻射中心與近緣X光吸收光譜測量簡介 20 2-5-2 硼的K-edge 近緣X光光譜比較 24 2-5-3 氧的K-edge近緣X光吸收光譜比較 26 2-5-4 鎂的K-edge近緣X光吸收光譜比較 28 2-6 結論 30 第三章 均溫中MgB2薄膜製作流程與薄膜特性 31 3-1-1 射頻磁控濺鍍系統與薄膜成長 34 3-1-2 初級膜的高溫退火處理 36 3-2 超導臨界溫度量測 38 3-3 X光繞射(X-Ray powder Diffractometer, XRD)分析 39 3-4 原子力顯微鏡(Atomic Force Microscope, AFM)分析 40 3-5 近緣X光吸收光譜(X-ray Absorption Near Edge Structure ,XANES)分析 42 3-5-1 硼的K-edge 近緣X光吸收光譜 42 3-5-2 氧的K-edge 近緣X光吸收光譜 44 3-5-3 鎂的K-edge 近緣X光吸收光譜 46 3-6 結論 48 第四章 MgB2微橋製作與特性 49 4-1-1 紫外光曝光顯影蝕刻流程 51 4-1-2 MgB2微橋特性 52 4-2-1 電子束(E-Beam)曝光顯影蝕刻流程 54 4-2-2 MgB2微橋特性 55 4-3 高純度MgB2超導薄膜特性 61 第五章 實驗結果與未來方向 66 5-1 實驗結果 66 5-2 未來方向 68 參考資料 70 附錄一:原子力顯微鏡操作流程 73 附錄二:不銹鋼盒結構 76

    [1] J, Nagamatsu, N, Nakagawa, T, Muranaka, Y, Zenitani, and
    J, Akimitsu. Nature 410, 63 (2001).
    [2] S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N.
    Anderson, and P. C. Canfield. Phys. Rev. Lett. 86, 1877 (2001).
    [3] B. A. Glowacki, M. Majoros, M. Vickers, J. E. Evvets, Y. Shi, and
    I. McDougall. Supercond, Sci. Technol. 14, 193 (2001).
    [4] G. Grasso, A. Malagoli, C. Ferdeghini, S. Roncallo, V. Braccini,
    M. R. Cimberle, and A. S. Siri. Appl. Phys. Lett. 79, 230 (2001).
    [5] H. J. Kim, W. N. Kang, E. M. Choi, M. S. Kim, K. H. P. Kim, and S. I. Lee. cond-mat/0105363 (2001).
    [6] M. Paranthaman, C. Cantoni, H. Y. Zhai, H. M. Christen, T. Aytug, S. Sathyamurthy, E. D. Specht, J. R. Thompson, D. H. Lowndes, H. R. Kerchner, and D. K. Christen. Appl. Phys. Lett. 78, 3669 (2001).
    [7] W. N. Kang, H. J. Kim, E. M. Choi, C. U. Jung and S. I. Lee. Science 292, 1521 (2001).
    [8] L. Y. Wu, C. N. Chang, C. H. Hsieh, B. J. Huang, H. C. Yang, and J. M. Chen. CHINESE JOURNAL OF PHYSICS. 42, 534 (2004).
    [9] H. Y. Zhai, H. M. Christen, L. Zhang, C. Cantoni, M. Paranthaman, B. C. Sales, D. K. Christen, and D. H. Lowndes. Appl. Phys. Lett. 79, 2603 (2001).
    [10] S. R. Shinde, S. B. Ogale, R. L. Greene, T. Venkatesan, P. C. Canfield , S. L. Bud’ko, G. Lapertot, and C. Petrovic. Appl. Phys. Lett. 79, 227 (2001).
    [11] S. F. Wang, S. Y. Dai, Y. L. Zhou, Z. H. Chen, D. F. Cui, J. D. Ju, M. He , J. B. Lu and G. Z. Yang. Supercond. Sci. Technol. 14, 885 (2001).
    [12] C. B. Eom, M. K. Lee, J. H. Choi, L. J. Belenky, X. Song, L. D. Cooley, M. T. Naus, S. Patnaik, J. Jiang, M. Rikel, A. Polyanskii, A. Gurevich, X. Y. Cai, S. D. Bu, S. E. Babcock, E. E. Hellstrom, D. C. Larbalestier, N. Rogado, K. A. Regan, M. A. Hayward, T. He, J. S. Slusky, K. Inumaru, M. K. Haas, and R. J. Cava. Nature. 411, 558 (2001).
    [13] D. H. A. Blank, H. Hilgenkamp, A. Brinkman, D. Mijatovic, G. Rijnders, and H, Rogalla. cond-mat/0102410.
    [14] X. X. Xi, X. H. Zeng, A. V. Pogrebnyakov, S. Y. Xu, Qi Li, Yu Zhong, C. O. Brubaker, Zi-Kui Liu, E. M. Lysczek, J. M. Redwing, J. Lettieri, D. G. Schlom, W. Tian, and X. Q. Pan. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY 13, 3233 (2003).
    [15] T. A. Callcott, L. Lin, G. T. Woods, G.P. Zhang, J.R. Thompson, M. Paranthaman, and D. L. Ederer. Phys. Rev. B. 64, 132504 (2001).
    [16] Zi-Kui Liu, D. G. Schlom, Qi Li, and X. X. Xi. Appl. Phys. Lett. 78, 3678 (2001).
    [17] D. K. Finnemore, J. E. Ostenson, S. L. Bud’ko, G. Lapertot, and P. C.Canfield, Phys. Rev. Lett. 86, 2420 (2001).
    [18] K. K. Likharev, Rev. Mod. Phys. 51, 101 (1979).
    [19] Alexander Brinkman, Dick Veldhuis, Dragana Mijatovie, Guus Rijnders, Dave H. A. Blank, Hans Hilgenkamp, and Horst Rogalla. Appl. Phys. Lett. 79, 2420 (2001).
    [20] Gavin Burnell, Dae-Joon Kang, David A. Ansell, H.-N. Lee, S.-H. Moon, Edward J. Tarte, and Mark G. Blamire. Appl. Phys. Lett. 81, 102 (2002).

    [21] Atsushi Saito, Akira Kawakami, Hisashi Shimakage, Hirotaka Terai, and Zhen Wang. IEEE Transactions on Applied Superconductivity, 13, 1067 (2003).
    [22] Anayesu Malisa, Markus Valkeapaa, Lars-Gunnar Johansson, and Zdravko Ivanov. Supercon. Sci. Tenchnol. 17, S345 (2004).

    QR CODE