簡易檢索 / 詳目顯示

研究生: 歐陽宗煜
論文名稱: LixCoO2單晶樣品之電化學製備與磁性研究
指導教授: 劉祥麟
Liu, Hsiang-Lin
周方正
Chou, Fang-Cheng
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 75
中文關鍵詞: 單晶電化學
英文關鍵詞: LixCoO2
論文種類: 學術論文
相關次數: 點閱:215下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用溶劑生長法來成長LixCoO2 單晶樣品,透過電化學法製備出不同鋰離子含量的LixCoO2 單晶樣品,並使用單晶X 光繞射儀及超導量子干涉儀檢視LixCoO2 單晶樣品的結構變化與磁性特性。
    在磁性部份,當鋰離子含量介於0.71 – 0.87 及0.33 – 0.38 的區間內,LixCoO2單晶樣品表現出Curie-Weiss 順磁性行為;但當鋰離子含量介於0.38 – 0.71 的範圍內時,LixCoO2 單晶樣品表現出Pauli 自由電子順磁行為。在LixCoO2 單晶樣品的Co4+皆處於低自旋態而非高自旋態。
    鋰離子含量為0.87 的LixCoO2 單晶樣品,當外加磁場平行晶體的c 軸方向,絕對溫度達9 K 時,磁化率出現一個寬峰,推測此行為可能與鈉離子含量為0.82的NaxCoO2 的A 型反鐵磁有序類似。鋰離子含量為0.53 的LixCoO2 單晶樣品,當絕度溫度達66 K,磁化率強度出現一遞減的趨勢,推測為自旋狀態變化所導致此一行為。鋰離子含量為0.50 的LixCoO2 單晶樣品,當絕度溫度達200 K 時,磁化率出現一個小峰,推測為反鐵磁有序的相轉變。鋰離子含量為0.47 的LixCoO2
    單晶樣品,當絕度溫度到達175 K 時,會出現磁化率熱滯現象,此現象於LixCoO2粉末樣品中也有發現,此磁性異常行為可能是自旋狀態的相轉變或是電荷分佈不均勻,或表面磁性所致。這些磁性異常現象可能與LixCoO2 單晶樣品的自旋自由度複雜性有關。不同鋰離子濃度的LixCoO2 的磁性相圖已經完整透過單晶樣品製作完成。

    We have prepared a series of high quality and Li content well controlled LixCoO2 single crystals using electrochemical de-intercalation method. Li content x is determined by means of inductively coupled plasma-mass pectrometer (ICP-MS).We used the flux method to obtain pristine Li0.87CoO2 single crystal. X-ray diffraction and magnetic susceptibility measurements have been performed on single crystal samples of 0.33 ≤ x ≤ 0.87.

    In 0.71 ≤ x ≤ 0.87 and 0.33 ≤ x ≤ 0.38 region, the LixCoO2 crystals show pure Curie-Weiss paramagnetic behavior. But for 0.38 < x < 0.71, LixCoO2 crystals exhibit
    Pauli paramagnetic behavior. Under the assumption of all spins are localized to follow Curie-Weiss law, we propose that Co4+ in the LixCoO2 (0.33 ≤ x ≤ 0.87) is low-spin state instead of high-spin state, in contrast to that proposed by Hertz et al.[1] for 0.94 ≤ x ≤ 1.00. In the case of Li0.87CoO2, there is a broad peak observed in the magnetic susceptibility near 9 K for H // c only, which indicates the occurrence of a possible A-type antiferromagnetic ordering similar to that found in Na0.82CoO2.[2] Additionally,a small reduction of magnetic susceptibility near 66 K is seen for Li0.53CoO2, which suggests the existence of a spin state transition. Li0.50CoO2 shows a cusp near 200 K when H // ab direction, which is suggested to be an antiferromagnetic transition similar to that found in Na0.50CoO2 near 88 K. Furthermore, magnetic anomaly near 175 K have been observed for Li0.47CoO2, similar anomalies have also been found in Li0.5CoO2, Li0.67CoO2, and Li0.7CoO2 [1,3] powder samples in the past. The nature of these magnetic anomalies is unknown for now, but is possibly related to the spin state transition, charge disproportionation or surface magnetism. All of these observations suggest a complex nature of spin degrees of freedom in these materials. A detailed magnetic phase diagram is constructed and compared with Mukai et al.[4]

    Acknowledgements i Abstract iii Table of contents iv List of Figures v List of Tables ix Chapter 1 Introduction 1 Chapter 2 Literature review of LixCoO2 4 Chapter 3 Experimental techniques 26 Chapter 4 Results and discussion 45 4-1 Electrochemical de-intercalation 45 4-2 Magnetic susceptibility 48 Chapter 5 Conclusions 68 References 70

    [1] J. T. Hertz, Q. Huang, T. McQueen, T. Klimczuk, J. W. G. Bos, L. Viciu, and R. J. Cava, “Magnetism and structure of LixCoO2 and comparison to NaxCoO2”, Phys.
    Rev. B 77, 075119 (2008).

    [2] T. Motohashi, T. Ono, Y. Sugimoto, Y. Masubuchi, S. Kikkawa, R. Kanno, M.Karppinen, and H. Yamauchi, “Electronic phase diagram of the layered cobalt
    oxide system LixCoO2 (0.0 ≤ x ≤ 1.0)”, Phys. Rev. B 80, 1651142 (2009)

    [3] S. P. Bayrakci, I. Mirebeau, P. Bourges, Y. Sidis, M. Enderle, J. Mesot, D. P. Chen,C. T. Lin, and B. Keimer, “Magnetic ordering and spin waves in Na0.82CoO2”,
    Phys. Rev. Lett. 94, 157205 (2005).

    [4] K. Mukai, Y. Ikedo, H. Nozaki, J. Sugiyama, K. Nishiyama, D. Andreica, A.Amato, P. L. Russo, E. J. Ansaldo, J. H. Brewer, K. H. Chow, K. Ariyoshi, and T.
    Ohzuku, “Magnetic phase diagram of layered cobalt dioxide LixCoO2”, Phys. Rev.Lett. 99, 087601 (2007).

    [5] J. G. Bednorz & K. A. Müller, “Possible high Tc superconductivity in the Ba-La-Cu-O system”, Z. Phys. B 64, 189 (1986).

    [6] K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T.Sasaki, “Superconductivity in two-dimensional CoO2 layers”, Nature (London)422, 53 (2003).

    [7] Q. Huang, M. L. Foo, R. A. Pascal, Jr., J. W. Lynn, B. H. Toby, T. He, H. W.Zandbergen, and R. J. Cava, “Coupling between electronic and structural degrees of freedom in the triangular lattice conductor NaxCoO2”, Phys. Rev. B 70, 184110(2004).

    [8] I. Terasaki, Y. Sasago, and K. Uchinokura, “Large thermoelectric power in NaCo2O4 single crystals”, Phys. Rev. B 56, R12685 (1997).71

    [9] J. Sugiyama, H. Nozaki, J. H. Brewer, E. J. Ansaldo, G. D. Morris, and C. Delmas,“Frustrated magnetism in the two-dimensional triangular lattice of LixCoO2”, Phys.Rev. B 72, 144424 (2005).

    [10] T. Ohzuku and A. Ueda, “Solid-state redox reactions of LiCoO2 (R3m) for 4 volt secondary lithium cells”, J. Electrochem. Soc. 141, 2972 (1994).

    [11] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, “LixCoO2 (0 < x ≤ 1): A new cathode material for batteries of high energy density”, Mater. Res.Bull. 15, 783 (1980).

    [12] M. Ménétrier, I. Saadoune, S. Levasseur, and C. Delmas, “The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study”, J. Mater. Chem. 9, 1135 (1999).

    [13] J. N. Reimers and J. R. Dahn, “Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2”, J. Electrochem. Soc. 139, 2091(1992).

    [14] A. Van der Ven, M. K. Aydinol, G. Ceder, G. Kresse, and J. Hafner,“First-principles investigation of phase stability in LixCoO2”, Phys. Rev. B 58,2975 (1998).

    [15] T. Nagaura, “Electrochemical secondary cell using lithium and a liquid organic electrolyte”, JEC Battery Newsletter 2, 2 (1991).

    [16] Y. Takahashi, N. Kijima, K. Tokiwa, T. Watanabe, and J. Akimoto,“Single-crystal synthesis, structure refinement and electrical properties of Li0.5CoO2”, J. Phys.: Condens. Matter 19, 436202 (2007).

    [17] M. Catti, “Ab initio study of Li+ diffusion paths in the monoclinic Li0.5CoO2 intercalate”, Phys. Rev. B 61, 1795 (2000).

    [18] Y. Shao-Horn, S. Levasseur, F. Weill, and C. Delmas, “Probing lithium and vacancy ordering in O3 layered LixCoO2 (x ≈ 0.5)”, J. Electrochem. Soc. 150,72
    A366 (2003).

    [19] Y. Takahashi, Y. Gotoh, J. Akimoto, S. Mizuta, K. Tokiwa, and T. Watanabe,“Anisotropic electrical conductivity in LiCoO2 single crystal”, J. Solid State Chem. 164, 1 (2002).

    [20] H. Watanabe, Y. Mori, M. Yokoi, T. Moyoshi, M. Soda, Y. Yasui, Y. Kobayashi,M. Sato, N. Igawa, and Kakurai, K. “Magnetic and metal–insulator transitions in β-Na0.5CoO2 and γ-K0.5CoO2 —NMR and Neutron Diffraction Studies—”, J.Phys. Soc. Jpn. 75, 034716 (2006).

    [21] S. Venkatraman and A. Manthiram, “Synthesis and characterization of P3-Type CoO2-δ”, Chem. Mater. 14, 3907 (2002).

    [22] M. Catti, “Ab initio study of Li+ diffusion paths in the monoclinic Li0.5CoO2 intercalate”, Phys. Rev. B 74, 085117 (2006).

    [23] S. Levasseur, M. Menetrier, Y. Shao-Horn, L. Gautlier, A. Audemer, G. Demazeau, A. Largeteau, and C. Delmas, “Oxygen vacancies and intermediate spin trivalent cobalt ions in lithium-overstoichiometric LiCoO2”, Chem. Mater.15, 348 (2003).

    [24] S. Kikkawa, S. Miyazaki, and M. Koizumi, “De-intercalated NaCoO2 and LiCoO2”, J. Solid State Chem. 62, 35 (1986).

    [25] M. L. Foo, Y. Wang, S. Watauchi, H. W. Zandbergen, T. He, R. J. Cava, and N. P.Ong, “Charge ordering, commensurability, and metallicity in the phase diagram of the layered NaxCoO2”, Phys. Rev. Lett. 92, 247001(2004).

    [26] Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, “Spin entropy as the likely source of enhanced thermopower in NaxCo2O4”, Nature (London) 423, 425(2003).

    [27] G. G. Amatucci, J. M. Tarascon, and L. C. Klein, “CoO2, the end member of the LixCoO2 solid solution”, J. Electrochem. Soc. 143, 1114 (1996).73

    [28] H. J. Orman and P. J. Wiseman, “Cobalt (III) lithium oxide, CoLiO2 : structure refinement by powder neutron diffraction”, Acta Crystallogr., Sect. C: Cryst.Struct. Commun. 40, 12 (1984).

    [29] G. J. Shu, Andrea Prodi, S. Y. Chu, Y. S. Lee, H. S. Sheu, and F. C. Chou,“Searching for stable Na-ordered phases in single-crystal samples of γ-NaxCoO2”,Phys. Rev. B 76, 184115 (2007).

    [30] F.-T. Huang, G. J. Shu, M.-W. Chu, Y. K. Kuo, W. L. Lee, H. S. Sheu, and F. C.Chou, “Sodium ion ordering of Na0.77CoO2 under competing multivacancy cluster, superlattice, and domain formation”, Phys. Rev. B 80, 144113 (2009).

    [31] G. J. Shu and F. C. Chou, “Sodium-ion diffusion and ordering in single-crystal P2-NaxCoO2”, Phys. Rev. B 78, 052101 (2008).

    [32] F. C. Chou, M.-W. Chu, G. J. Shu, F.-T. Huang, Woei Wu Pai, H. S. Sheu, and Patrick A. Lee, “Sodium ion ordering and vacancy cluster formation in NaxCoO2 (x = 0.71 and 0.84) single crystals by synchrotron x-ray diffraction”, Phys. Rev. Lett. 101, 127404 (2008).

    [33] F.-T. Huang, M.-W. Chu, G. J. Shu, C. H. Chen, L.-K. Liu, Patrick A. Lee, and F. C. Chou, “X-ray and electron diffraction studies of superlattices and long-range
    three-dimensional Na ordering inγ-NaxCoO2 (x = 0.71 and 0.84)”, Phys. Rev. B79, 014413 (2009).

    [34] C. Delmas, C. Fouassier, and P. Hagenmuller, “Structural classification and properties of the layered oxides”, Physica B&C 99, 81 (1980).

    [35] A. J. Berlinsky, W. G. Unruh, W.R. McKinnon, and R. R. Hearing, “Theory of lithium ordering in LixTiS2”, Solid State Commun., 31, 185 (1979).

    [36] Y. Ono, R. Ishikawa, Y. Miyazaki, Y. Ishii, Y. Morii, and T. Kajitani, “Crystal structure, electric and magnetic properties of layered cobaltite β-NaxCoO2”, J.Solid State Chem. 166, 177 (2002).74

    [37] C. Delmas, J. J. Braconnier, and P. Hagenmuller, “A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction”, Mater. Res. Bull. 17,117 (1982).

    [38] D. Carlier, I. Saddoune, M. Menetrier, and C. Delmas, “Lithium electrochemical deintercalation from O2-LiCoO2”, J. Electrochem. Soc. 149, A1310 (2002).

    [39] S. Levasseur, M. Menetrier, E. Suard, and C. Delmas, “Evidence for structural defects in non-stoichiometric HT-LiCoO2: electrochemical, electronic properties and 7Li NMR studies”, Solid State Ionics 128, 11 (2000).

    [40] T. A. Hewston and B. L. Chamberland, “A survey of first-row ternary oxides LiMO2 (M = Sc-Cu)”, J. Phys. Chem. Solids 48, 97 (1987).

    [41] Y. Takahashi, N. Kijima, K. Dokko, M. Nishizawa, I. Uchida, and J. Akimoto,“Structure and electron density analysis of electrochemically and chemically delithiated LiCoO2 single crystals”, J. Solid State Chem. 180, 313 (2007).

    [42] J. Sugiyama, H. Nozaki, J. H. Brewer, E. J. Ansaldo, G. D. Morris, and C. Delmas, “Frustrated magnetism in the two-dimensional triangular lattice of LixCoO2”, Physica B 374, 148 (2006).

    [43] R. D. Shannon and C. T. Prewitt, “Effective ionic radii in oxides and fluorides”,Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25, 925 (1969).

    [44] C. de Vaulx, M.-H. Julien, C. Berthier, M. Horvatić, P. Bordet, V. Simonet, D. P.Chen, and C. T. Lin, “Nonmagnetic insulator state in Na1CoO2 and phase
    separation of Na vacancies”, Phys. Rev. Lett. 95, 186405(2005).

    [45] L. M. Helme, A. T. Boothroyd, R. Coldea, D. Prabhakaran, D. A. Tennant, A. Hiess, and J. Kulda, “Three-dimensional spin fluctuations in Na0.75CoO2”, Phys.Rev. Lett. 94, 157206 (2005).

    [46] A.T. Boothroyd, R. Coldea, D. A. Tennant, D. Prabhakaran, L.M. Helme, and C.D. Frost, “Ferromagnetic in-plane spin fluctuations in NaxCoO2 observed by 75 neutron inelastic scattering”, Phys. Rev. Lett. 92, 197201 (2004).

    下載圖示
    QR CODE