簡易檢索 / 詳目顯示

研究生: 吳佳容
Chia-Jung Wu
論文名稱: 多頻道人體免疫抗體石英壓電趕測器的研製與應用
Multi-channel Piezoelectric Immunosensor for Human Immunoglobulins
指導教授: 施正雄
Shih, Jeng-Shong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 138
中文關鍵詞: 壓電免疫抗體
英文關鍵詞: piezoelectric, immunoglobulin
論文種類: 學術論文
相關次數: 點閱:207下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多頻道人體免疫抗體石英壓電感測器的研製與應用

    摘要

    本研究旨在研製一多頻道的固定化碳六十/免疫球蛋白抗體石英壓電晶體感測器,並運用此固定化的石英壓電晶體感測器偵測溶液中的免疫球蛋白(IgG, IgA, IgM),再利用碳六十/PVC做為壓電感測器的塗佈膜,探討碳六十與人體免疫球蛋白抗體(Anti-IgG, Anti-IgA, Anti-IgM)間的作用力。研究結果顯示碳六十能和抗人體免疫球蛋白結合,呈現不可逆的化學性吸附現象。此碳六十-抗體可由碳六十與人體免疫球蛋白抗體反應得到,並以FT-IR光譜做鑑定。並探討碳六十/PVC塗佈量以及人體免疫球蛋白抗體的濃度對免疫球蛋白吸附量的影響,發現塗佈4μg碳六十/PVC以及注入0.6mg/mL的 Anti-IgG、0.3mg/mL的 Anti-IgA、0.014mg/mL的 Anti-IgM可獲得最大訊號。
    將固定化的碳六十-人體免疫球蛋白抗體石英壓電晶片接上自組的電子線路界面,偵測溶液中的免疫球蛋白,可得到頻率下降的訊號變化,且為可逆的物理性吸附,證實碳六十與抗人體免疫球蛋白結合之後仍具有活性,且頻率訊號與人體免疫球蛋白濃度呈一線性關係,其偵測靈敏度分別為9.62×103Hz/(mg/mL)、1.86×105Hz/(mg/mL)、4.48×105Hz/(mg/mL),偵測下限為9.97×10-4mg/mL、3.19×10-5mg/mL、1.72×10-5mg/mL。此免疫感測器可重複偵測免疫球蛋白達五次以上,有不錯再現性。
    利用此現象更深入探討人體免疫球蛋白抗體-免疫球蛋白反應的條件,結果顯示其最適pH值在6~7之間,最適溫度25~350C。若將此碳六十-人體免疫球蛋白抗體石英壓電晶片保存於40C下,可保存其有效性達六天以上。
    本研究亦探討當人體中常見的生化物質,如glucose、uric acid、cystein、tyrosine等存在時對免疫球蛋白感測的影響,結果顯示其選擇係數皆達90%以上。

    Multi-channel Piezoelectric Immunosensor for Human Immunoglobulins
    Abstract

    Fullerene C60-anti-human immunoglobulin, C60-anti-human IgG, C60-anti-human IgA and C60-anti-human IgM, coated piezoelectric crystals were prepared and applied in a multichannel piezoelectric quartz crystal immunosensors for human IgG, human IgA and human IgM, respevtively. The immobilization of anti-IgG, anti-IgA and anti-igM onto fullerene C60 were studied with a C60-coated piezoelectric crystal detection system. The partially irreversible responses for anti-human immunoglobulin were observed by the desorption study, which implied that anti-human immunoglobulin could be adsorbed on C60 by chemisorption.
    The immobilized C60/anti-human immunoglobulin coating materials were successfully prepared and identified with FTIR spectrometry. The fullerene C60-coated piezoelectric quartz crystal sensor was employed to study the interacton between C60 and anti-hunan immunoglobulin. In order to obtain maximum adsorption of anti-human immunoglobulin on C60-coated crystal , the C60-anti-human immunoglobulin coated quartz crystal were prepared with 4μg C60 crystal coating and 0.6mg/mL Anti-IgG, 0.3mg/mL Anti-IgA, 0.014mg/mL Anti-IgM in water.
    The C60-anti-human immunoglobulin coated PZ quartz crystal immunosensors with homemade computer interfaces for signal acquisition and data processing were developed and applied for detection of human immunoglobulin,respectively. The C60-anti-human immunoglobulin coated PZ immunosensors for IgG, IgA and IgM exhibited linear frequency responses to the concentrations of human IgG, IgA and IgM with sensitivities of 9.62×103, 1.86×105 and 4.48×105 Hz/ (mg/mL). And the C60-anti-human immunoglobulin coated PZ immunosensors showed detection limit of 9.97×10-4, 3.19×10-5 and 1.72×10-5mg/mL for IgG, IgA and IgM in water.
    The reproducibility and lifetime of these immobilized C60-anti- human immunoglobulin coated PZ immunosensors were also investigated and discussed.
    Effects of pH and temperature on the frequency response of the immunosensor were also investigated. Optimum pH of the solution and optimum temperature for the sensor were observed at pH=6~7 and 25~350C. The interference of various common species in the human blood, e.g. glucose, uric acid, cystein and tyrosine showed nearly no interference to the detection of human IgG, IgA and IgM with the piezoelectric immunosensor.

    目錄 中文摘要……………………………………………………………………………Ⅰ 英文摘要………………………………………………………………………… Ⅲ 目錄…………………………………………………………………………………Ⅴ 圖目錄…………………………………………………………………………….Ⅸ 表目錄……………………………………………………………………………ⅩⅢ 第一章 序論 1 1-1 碳六十化學 1 1-1-1 碳六十的發現 1 1-1-2 碳六十的基本性質 3 1-1-3 碳六十的化學反應 7 1-1-4 碳六十的應用與未來展望 9 1-1-4.1 碳六十在材料方面的應用 9 1-1-4.1.1 碳六十在高溫超導方面的應用 9 1-1-4.1.2 碳六十在有機發光二極體的應用 10 1-1-4.1.3 碳六十在非線性光學材料的應用 11 1-1-4.2 碳六十在生化方面的應用 12 1-1-4.2.1 碳六十在藥物上面的應用 12 1-1-4.2.2 碳六十能抑制土壤細菌 13 1-2 免疫學簡介 14 1-2-1 免疫反應 14 1-2-2 免疫球蛋白簡介 16 1-2-2.1 免疫球蛋白IgG 22 1-2-2.2 免疫球蛋白IgA 23 1-2-2.3 免疫球蛋白IgM 23 1-2-2.4 免疫球蛋白IgD 24 1-2-2.5 免疫球蛋白IgE 24 1-2-3 抗原簡介 31 1-2-4 抗體和抗原結合的機制 32 1-3 壓電感測器 38 1-3-1 化學感測器 38 1-3-2 壓電晶體之壓電性 39 1-3-3 石英振盪器 41 1-3-4 AT-cut石英振盪晶體的特性 44 1-3-5 石英振盪晶體的線路 45 1-3-6 振盪頻率的量測 46 1-3-7 石英微量天平 48 1-3-8 石英壓電晶體在分析化學領域上的應用 52 1-3-8.1 石英壓電晶體在氣相偵測上的應用 52 1-3-8.2 石英壓電晶體在液相偵測上的應用 53 1-3-8.3 石英壓電晶體在生醫感測上的應用 56 1-4 研究動機 60 第二章 實驗部分 61 2-1 實驗原理與目的 61 2-2 藥品與儀器 61 2-3 碳六十石英晶片 61 2-3-1 石英晶片的處理 61 2-3-2 石英晶體表面塗佈液(coating solution) 62 2-3-3 表面塗佈法 62 2-4 多頻道液相石英壓電感測系統 64 2-4-1 石英壓電晶體起振線路 64 2-4-2 多頻道壓電感測器微電腦界面 65 2-4-2.1 微電腦界面線路設計 65 2-4-2.2 系統控制流程 66 2-4-3 多頻道液相石英壓電感測系統 67 2-5 實驗項目 69 2-5-1 碳六十與抗人體免疫抗體間作用力研究 69 2-5-2 抗體與抗原間作用力研究 69 第三章 實驗結果與討論 70 3-1 碳六十與抗免疫球蛋白間作用研究 70 3-1-1 C60/PVC塗佈壓電晶體對抗人體免疫球蛋白抗體感應訊號 70 3-1-2 C60/PVC塗佈量效應 70 3-1-3 抗人體免疫球蛋白抗體的濃度效應 71 3-1-4 抗人體免疫球蛋白抗體的吸附及脫附 82 3-2 碳六十/抗人體免疫球蛋白之鑑定 82 3-2-1 C60/anti-human IgG 抗體的鑑定 82 3-2-2 C60/anti-human IgA 抗體的鑑定 83 3-2-3 C60/anti-human IgM 抗體的鑑定 83 3-3 碳六十/抗免疫球蛋白塗佈壓電晶體感測器 88 3-3-1 碳六十/抗免疫球蛋白的活性 88 3-3-2 碳六十/抗免疫球蛋白-免疫抗體吸附之可逆性 88 3-3-3 待測抗體濃度效應 91 3-3-3.1 各頻道對免疫抗體感測之偵測下限 91 3-3-3.2 人體免疫抗體IgG的偵測下限 92 3-3-3.3 人體免疫抗體IgA的偵測下限 92 3-3-3.4 人體免疫抗體IgM的偵測下限 93 3-3-4 多頻道感測對免疫抗體感測之再現性 96 3-3-5 碳六十/抗人體免疫球蛋白晶片的儲存活性 100 3-3-6 抗體溶液pH值效應對感測的影響 103 3-3-7 溫度對感測的影響 103 3-3-8 生化物質對抗體感測的干擾研究 110 第四章 結論 129 參考文獻………………………………………………………………130 附錄……………………………………………………………………136

    參考文獻
    1. Osawa, E. Kagaku(Kyoto) 1970, 25, 854-863 (in Japanese); Chem. Abstr. 1971, 74, 75698v.
    2. Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. ,C60:Buckminsterfullerene, Nature 1985, 318, 162-163.
    3. Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. ,Solid C60:a new form of carbon, Nature 1990, 347, 354-358.
    4. Hawkins, J. M.; Meyer, A.; Lewis, T. A.; Loren, S.; Hollander, F. J. ,Crystal Structure of Osmylated C60 : Confirmation of the Soccer Ball Framework, Science 1991, 252, 312-313.
    5. Withers, J. C.; Loutfy, R. O.; Lowe, T. P. ,Fullerene Commercial Vision, Fullerence Science And Technology 1997, 5(1), 1-31.
    6. Scrivens, W. A.; Bedworth, P. V.; Tour, J. M. ,Purification of Gram Quanties of C60. A New Inexpensive and Facile Method, J. Am. Chem. Soc. 1992, 114, 7917-7919.
    7. Kroto, H. W.; Allaf, A. W.; Balm, S. P. ,C60: Buckminsterfullerence, Chem. Rev. 1991 ,91 ,1213-1235.
    8. Schön, J. H.; Kloc, Ch.; Batlogg, B. ,High-Temperature Superconductivity in Lattice-Expanded C60, Science 2001, 293, 2432-2434.
    9. Taylor, R.; Hare, J. P.; Abdul-Sada, A. K.; Kroto, H. W. ,Isolation, Separation,and Characterization of the Fullerenes C60 and C70: The Third Form of Carbon, J. Chem. Soc., Chem. Commun. 1990, 1423-1425.
    10. Chen, W.; Xu, Z. ,Temperature Dependence of C60 Solubility in Different Solvent, Fullerence Science And Technology 1998, 6(4), 695-705.
    11. Haufler, R. E.; Conceicao, J.; Chibante, L. P. F.; Chia, Y.; Byrne, N. E.; Flangan, S.; Haley, M. M.; O’Brien, S. C.; Pan, C.; Xiao, Z.; Billups, W. E.; Ciufolini, M. A.; Hauge, R. H.; Margrave, J. L.; Wilson, L. J.; Curl, R. F.; Smalley, R. H. ,Efficient Production of C60 (Buckminsterfullerene), C60H36, and the Solvated Buckide Ion, J. Phys. Chem. 1990, 94, 8634-8636.
    12. Taylor, R.; Walton, D. R. M. ,The chemistry of fullerenes, Nature 1993, 363, 685-693.
    13. Haddon, R. C.; Hebard, A. F.; Rosseinsky, M. J.; Murphy, D. W.; Duclos, S. J.; Lyons, K. B.; Miller, B.; Rosamilia, J. M.; Fleming, R. M.; Krotan, A. R.;Glarum, S. H.; Makhija, A. V.; Muller, A. J.; Eick, R. H.; Zahurak, S. M.; Tycko, R.; Dabbagh, G.; Thiel, F. A. ,Conducting Films of C60 and C70 by Alkali-Metal Doping, Nature 1991, 350, 320-322.
    14. Fleming, R. M. ; Ramirez, A. P. ; Rosseinsky, M. J. ; Murphy, D. W. ; Haddon, R. C.; Zahurak, S. U, Makhija, A. V. ,Relation of Structure and Superconducting Transition Temperatures in A3C60, Nature 1991, 352, 787-788.
    15. Holczer, K.; Klein, O.; Huang, S. M.; Kaner, R. B.; Fu, K. J.;Whetten, R. L.; Diederich, F. Science 1991, 252, 1154-1157.
    16. Http://www.nanotechweb.org/articles/news/4/2/10/1
    17. Lee, J. Y.; Kwon J. H. ,The effect of C60 doping on the device performance of organic light-emitting diodes, Appl. Phys. Lett. 2005, 86, 063514-063514-3.
    18. Http://nanotechweb.org/articles/news/2/9/12/1.
    19. Tokuyama, H.; Yamago, S., Nakamura, E.; Shiraki, T.; Sugiura, Y. ,Photoinduced Biochemical Activity of Fullerene Carboxylic Acid, J. Am. Chem. Soc. 1993, 115, 7918-7919.
    20. Friedman, S. H.; DeCamp, D. L.; Sijbesma, R. P.; Srdanov, G.;Wudl, F.; Kenyon, G. L. ,Inhibition of the HIV-1 Protease by Fullerene Derivatives: Model Building Studies and Experimental Verification, J. Am. Chem. Soc. 1993, 115, 6506-6509. Sijbesma, R.; Srdanov, G.; Wudl, F.; Castoro, J. A.; Wilkins, C.; Friedman, S. H.; DeCamp, D. L.; Kenyon, G. L. ,Synthesis of a Fullerene Derivative for the Inhibition of HIV Enzymes, J. Am. Chem. Soc. 1993, 115, 6510-6512.
    21. Eiichi N.; Hiroyuki I. ,Functionalized Fullerenes in Water. The First 10 Years of Their Chemistry, Biology, and Nanoscience, Acc. Chem. Res. 2003, 36, 807-815.
    22. Http://nanotechweb.org/articles/news/4/6/5/1
    23. Roitt, I. M., Essential Immunology, Blackwell Scientific Publications 1988.
    24. Roitt, I. M.; Brostoff, J.; Male, D. K., Immunology, Gower Medical Pub 1985.
    25. Goldsby, R. A.; Kindt, T. J.; Osborne, B. A.原著;許清祥總校閱;羅綸謙等編譯, Kuby免疫學, 合記圖書 , 2002.
    26. Richet, C. ,Nobel Lectutres, Physiology or Medicine 1901-1921, Elsevier , 1967.
    27. Http://nobelprize.org/medicine/laureates/1913/richet-lecture.html.
    28. Miroslav Ferenčík, Handbook of Immunochemistry, CHAPMAN&HALL 1993.
    29. Tiselius, A. ,A new apparatus for electrophoretic analysis of colloid mixture, Trans. Faraday Soc. 1937, 33, 524-531.
    30. Tiselius, A.; Kabat, E. A. ,An electrophoretic study of immune sera and purified antibody preparation, J. Exp. Med. 1939, 69, 119-131.
    31. Tiselius, A. ,Electrophoresis and Adsorption Analysis as Aids in Investigation of Large Molucular Weight Substances and Their Breakdown Products, Nobel Lecture, Chemistry 1942-1962, Elsevier, 1964.
    32. Porter, R. R. ,The formation of a specific inhibitor by hydrolysis of rabbit antiovalbimin, Biochem. J. 1950, 46, 479-484.
    33. Edelman, G. M. ,Antibody structure and molecular immunology, Science 1973, 180, 830-844.
    34. Porter, R. R. ,Structure studies of Immunoglobulin, Nobel Lectures, Physiology or Medicine 1971-1980, World Scientific, 1992.
    35. Edelman, G. M. ,Antibody Structure and Molecular Immunology, Nobel Lectures, Physiology or Medicine 1971-1980, World Scientific, 1992.
    36. Hilschmann, N.; Craig, L. C. ,Amino acid sequence studies with Bence Jones proteins, Proc. Natl. Acad. Sci. USA, 53, 1403-1409.
    37. Parham原著;黎煥耀編譯, 免疫系統, 偉明圖書, 2002
    38. 林明泉, 臨床血清免疫學 Clinical Immunology and Serology, 藝軒圖書, 1997.
    39. Schiffer, M.; Amoss, M. S.; Anderson, H.; Vale, W. ,Structure of a λ-type Bence-Jones protein at 3.5-Å resolution, Biochemistry 1973, 12, 4620-4631.
    40. Http://www.chem.qmul.ac.uk/iupac/
    41. Janata, J.; Bezegh, A. ,Chemical sensors, Anal. Chem. 1988, 60(12), 62R-74R.
    42. Diamond, D. ,Principles of chemical and biological sensors, Wiley, 1998.
    43. Lu, C.; Czanderna, C. A. W. ,Application of Piezoelectric Quartz Crystal Microbalance, Elsevier Science., New York, 1984.
    44. 吳朗, 電子陶瓷-壓電, 全欣科技圖書, 1994.
    45. 吳朗, 感測與轉換原理、原件與應用, 全欣科技圖書, 1992
    46. 謝煜弘, 電子材料, 新文京, 2001.
    47. 彭成鑑, 壓電材料, 科儀新知 1995, 16, 18-29.
    48. Buttry, D. A.; Ward, M. D. ,Measurement of Interfacial Process at Electrode Surfaces with the Electrochemical Quartz Crystal Microbalance, Chem. Rev. 1992, 92, 1355-1379.
    49. Ikeda, T. ,Fundamentals of Piezoelectricity, Oxford. Sci. Publ, 1990.
    50. Geddes, L. A.; Baker, L. E., Principle of Applied Biomedical Instrumentation(3rd Ed.), John Wiley & Sons. New York. 1989,163.
    51. Martin, S. J.; Frye, G. C.; Ricco, A. J., Effect of Surface Roughness on the Response of Thickness-shear Mode Resonators in Liquids, Anal. Chem. 1993, 65, 2910-2922.
    52. Levenson, L. L., Climento, Suppl.2, Ser.1 1967, 5, 321.
    53. Buttery, D. A.; Word, M. D., Measurement of Interfacial Process at Electrode Surface with the Electrochemical Quartz Crystal Microbalance, Chem. Rev. 1992, 92, 1355-1379.
    54. 紀培錦, 新電子科技雜誌, 1989, 17, 196-207.
    55. 湯進德, 微電子界面技術, 全華科技圖書, 1984.
    56. 袁帝文; 黃柏鈞, 數值邏輯設計與分析, 全欣科技圖書, 1992.
    57. 江宗達; 鍾健文編譯, IBM PC與感測器界面的探討, 全華科技圖書, 1994.
    58. Hlavay, J.; Guilbault, G. G., Application of the Piezoelectric Crystal Detector in Analytical Chemistry, Anal. Chem. 1977, 49(13), 1890-1898.
    59. Sauerbray, G. Z., Z. Phys. 1959, 155, 206-212.
    60. King, W. H. Jr., Piezoelectric Sorption Detector, Anal. Chem. 1964, 36, 1735-1739.
    61. Chang, P.; Shih, J. S., Application of Piezoelectric Ru(Ⅲ)/Cryptand Coated Quartz Crystal Gas Chromatographic Detector for Olefins, Anal. Chem. Acta., 1999, 380, 55-62.
    62. Chang, P.; Shih, J. S., Multi-channel Piezoelectric Quartz Crystal Sensor for Organic Vapours, Anal. Chem. Acta., 2000, 403, 39-48.
    63. Bruckenstein, S.; Shay, M., Experimental Aspects of Use of the Quartz Crystal Microbalance in Solution, Electrochimica Acta, 1985, 30(10), 1295-1300.
    64. Thompson, M.; Kliping, A. L.; Duncan-Hewitt, W. C., Thickness-shear-mode Acoustic Wave Sensors in the Liquid Phase, A Review, Analyst. 1991, 116, 881-890.
    65. 林俐慧, 碳六十/雙硫醇壓電晶體膜感測器的研製與應用, 國立台灣師範大學碩士論文, 2000.
    66. 游若琳, 碳六十/聚合物石英壓電晶體偵測器之研製與應用, 國立台灣師範大學碩士論文, 1998.
    67. Chiou, C. S.; Shih, J. S., Fullerene C60-cryptand chromatographic stationary phase for separations of anions/cations and organic molecules, Anal. Chim. Acta. 2000, 416, 169-175.
    68. Scouten, W. H.; Long, J. H. T.; Brown, R. S., Enzyme or protein immobilization techniques for applications in biosensor design, Trends in Biothchnol. 1995, 13, 178-185.
    69. 簡筱芳, 石英壓電晶體感測器應用於有機化合物與DNA作用力的研究, 國立台灣師範大學碩士論文, 2001.
    70. 許嘉琪, 石英壓電晶體感測器應用於無機化合物與DNA作用力的研究, 國立台灣師範大學碩士論文, 2001.
    71. Chang, M. S.; Shih, J. S., Fullerene-cryptand-coated piezoelectric crystal membrane glucose enzyme sensor, Sensors and Actuators 2000, B67, 275-281.
    72. Chung, C. W.; Shih, J. S., Preparation and application of immobilized C60-glucose oxidase enzyme in fullerene C60-coated piezoelectric quartz glucose sensor, Sensors and Actuators 2001, B81, 1-8.
    73. 莊佳雯, 碳六十固定化酵素生物感測器的研製與應用, 國立台灣師範大學碩士論文, 2000.
    74. Wei, L. F.; Shih, J. S., Fullerene-cryptand coated piezoelectric crystal urea sensor based on urease, Anal. Chim. Acta. 2001, 437, 77-85.
    75. Tatsuma, T.; Watanabe, Y.; Oyama, N., Multichannel Quartz Crystal Microbalance, Anal. Chem. 1999, 71, 3632-3636.
    76. Eun, A. J. C.; Huang, L.; Chew, F. T.; Li, S. F. Y.; Wong, S.M., Detection of two orchid viruses using quartz crystal microbalance(QCM) immunosensors, Journal of Virological Methods 2002, 99, 71-79.
    77. Muramatsu, H.; Dicks, J. M.; Tamiya, E.; Karube, I., Piezoelectric Crystal Biosensor Modified with Protein A for Determination of Immunoglobulins, Anal. Chem. 1987, 59, 2760-2763.
    78. Pan, N. Y.; Shih, J. S., Piezoelectric crystal immunosensors based on immobilized fullerene C60-antibodies, Sensors and Actuators 2004, B98, 180-187.
    79. 陳姿穎, 聚二氟亞乙烯在生化抗體壓電趕測器之應用及特性分析, 國立台灣師範大學碩士論文, 2002.
    80. 廖窈宣, 碳六十固定化免疫蛋白質石英壓電感測器的研製與應用, 國立台灣師範大學碩士論文, 2004

    QR CODE