簡易檢索 / 詳目顯示

研究生: 陳佳鈺
論文名稱: 結合地板壓力與紅外線影像之跌倒偵測系統
Design of Fall Detection System with Floor Pressure and Infrared Image
指導教授: 曾煥雯
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 91
中文關鍵詞: 紅外線跌倒偵測壓力感測專家系統
英文關鍵詞: Infrared, Fall detection, Pressure sensor, Expert system
論文種類: 學術論文
相關次數: 點閱:771下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於科技發展與醫療技術的精進,大家對病人照護品質也日益重視。據相關研究顯示跌倒住院約占意外事件的60%,且跌倒將導致老人健康惡化、產生併發症,除了增加家庭負擔也嚴重耗用社會醫療成本,因此跌倒意外的防範與即時偵測是提升現代生活品質的重要課題之一。本文提出一套可應用於醫療照護機構或居家的跌倒偵測系統,旨在即時偵測出跌倒行為並通報醫護人員,避免延誤就醫,減輕醫護人員及醫療成本的負擔。
      本論文不同於一般的看護系統在於,使用紅外線攝影機來擷取看護環境的影像輸入,其優點在於黑暗中也可正常運作;另外本系統結合了地板壓力感測的輔助,藉此減少不必要的警報。
      實驗結果驗證,在正常環境下使用簡單的偵測演算法搭配地板感測效果可提高系統偵測的正確率與可靠度。實驗結果也證實本論文所提出之跌倒偵測法,在室內環境中且允許各種路徑以及跌倒方向下,有不錯的成效。

    Due to the advancement of technology and medicine, people begin to pay more attention to the quality improvement of health care. Many researches show that the fall accident occupies 60% of all accidents in a home. The fall accident may cause the condition of an elder deteriorated or producing complications. As a result, it increases the burden of a family and seriously wastes medical resources from the society. Thus, preventing the fall accident and detect it immediately is one of the important topics regarding the quality improvement of health care. This thesis proposes a reliable tele-care system that can detect the fall accident immediately, notify medical personnel when the accident occurs, prevent the patient’s condition from deteriorating due to late treatment, and reduce the burden of medical personnel.
      A unique feature of the proposed system is that we use a Infrared Camera to capture images simultaneously and eliminate any blind spot. We can adjust the detection sensitivity on a case by case basis to reduce unnecessary alarms, and put more attention on the elderly with special diseases or conditions.
    The experimental results show that using a simple fall detection algorithm and combining it with simple personal information can raise fall detection accuracy and reliability effectively in a particular environment. The experimental results also show that the fall detection algorithm proposed here can do a good job in an indoor environment for all fall cases.

    目 錄 摘 要....................................... i ABSTRACT...................................... ii 謝 誌...................................... iii 目 錄....................................... iv 圖 目 錄...................................... vii 表 目 錄....................................... ix 第一章 緒論...................................... 1 1.1 研究背景.................................... 1 1.2 研究動機與目的............................... 2 1.3 研究方法.................................... 3 1.4 研究限制.................................... 4 1.5 研究步驟.................................... 5 第二章 文獻探討與回顧............................. 7 2.1 老年人之跌倒分析............................. 7 2.1.1 跌倒定義.................................. 7 2.1.2 跌倒成因.................................. 8 2.1.3 動作分析.................................. 9 2.1.4 相關研究.................................. 10 2.2 地板壓力感測器............................... 12 2.2.1 感測器基本原理............................. 12 2.2.2 壓力感測器................................. 14 2.2.3 負載元件.................................. 14 2.2.4 線性可變差動變壓器......................... 18 2.3 紅外線影像理論............................... 19 2.3.1 紅外線簡介................................ 19 2.3.2 紅外線成像的原理........................... 21 2.3.3 紅外線攝影機之應用......................... 22 2.4 專家系統.................................... 23 2.4.1 專家系統之定義............................. 23 2.4.2 專家系統的發展............................. 24 2.4.3 專家系統架構............................... 24 2.4.4 知識擷取.................................. 26 2.4.5 知識表現與知識推理.......................... 29 2.4.6 專家系統的特色與比較........................ 30 第三章 系統架構與方法............................. 33 3.1 跌倒偵測系統的架構與流程...................... 33 3.2 地板壓力感測判斷............................. 36 3.3 紅外線影像處理技術........................... 37 3.3.1 影像平滑處理.............................. 38 3.3.2 臨界值化.................................. 39 3.3.3 影像標記.................................. 41 3.3.4 影像膨脹與消蝕............................. 45 3.4 特徵擷取.................................... 48 3.4.1 投影直方圖標準差........................... 48 3.4.2 長寬比.................................... 50 3.5 影像和壓力感測結合專家系統判斷跌倒流程.......... 51 第四章 系統實驗與分析............................. 54 4.1 軟硬體環境.................................. 54 4.2 評估方法.................................... 56 4.3 研究實施.................................... 58 4.3.1 地板壓力.................................. 59 4.3.2 影像感測.................................. 61 4.3.3 實驗結果.................................. 63 4.4 研究討論.................................... 68 第五章 結論與後續研究............................. 72 5.1 結論........................................ 72 5.2 後續研究.................................... 73 參考文獻........................................ 74 附 錄........................................ 76 自 傳........................................ 81

    [1]黎家銘、陳晶瑩,老人跌倒因素的評估與預防,台灣醫學2005年9卷2期。
    [2]R. Sattin, “Falls among older persons: a public health perspective.” Review of Public Health.,13, 489-508, 1992
    [3]C. Patterson, and W. Torresin, “Falls in the elderly - keep your patient's feet on the ground.” Geriatrics, April 1989.
    [4]郭建德,老人居家跌倒警報系統之研製,崑山科技大學電子工程系碩士論文,民國94年。
    [5]林宸生,以個人數位助理(PDA)為基礎之可穿戴式跌倒即時監測系統,逢甲大學自動控制工程系碩士論文,民國93年。
    [6]F. R. Allen, E. Ambikairajah, N.H. Lovell and B.G. Celler, “An Adapted Gaussian Mixture Model Approach to Accelerometry-Based Movement Classification Using Time-Domain Features”, Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, USA, Aug. 30 Sept. 3 2006 pp.3600-3603.
    [7]M. Alwan, P.J. Rajendran, S. Kell, D. Mack, S. Dalal, M. Wolfe and R. Felder, “A Smart and Passive Floor-Vibration Based Fall Detector for Elderly”, Information and Communication Technologies, 2006. ICTTA '06. 2nd vol. 1, 24-28 April 2006 pp.1003-1007.
    [8]T. Zhang, J. Wang, P. Liu and J. Hou, “Fall Detection by Embedding an Accelerometer in Cellphone and Using KFD Algorithm”, IJCSNS International Journal of Computer Science and Network Security, vol. 6 no.10, pp.277-284 October 2006
    [9]C. Rougier, J. Meunier, A. St-Arnaud and J. Rousseau, “Monocular 3D Head Tracking to Detect Falls of Elderly People”, Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, USA, Aug. 30 Sept. 3 2006 pp.6384-6387.
    [10]林金泉,人類跌倒之行為分析與偵測,中央大學資訊工程研究所碩士論文,民國93年。
    [11]D. Anderson, Keller, M. James, S. Marjorie, Xi Chen and Z. He, “Recognizing Falls from Silhouettes”, Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, USA Aug. 30 Sept. 3 2006 pp.6388 – 6391.
    [12]M. Greiffenhagen, D. Comaniciu, H. Neimann, and V. Ramesh, “Design analysis, and engineering of video monitoring system: an approach and a case study”, Proc. of IEEE, vol. 89, no. 10, pp. 1498-1517, Oct. 2001.
    [13]宋佩栩,一個使用環場攝影機並結合個人資訊的客製化跌倒偵測系統,中原大學電子工程系碩士論文,民國95年。
    [14] A. Sixsmith and N. Johnson, “Smart sensor to detect the falls of the elderly,” IEEE Pervasive Computing, vol. 3, no. 2, pp. 42–47, April-June 2004.
    [15]C. M. Chang and C. F. Juang, “Human Body Posture Classification by a Neural Fuzzy Network and Home Care System Application”, SMC-A, No. 6, November 2007, pp. 984-994
    [16] 谷腰欣司 原著,趙中興 譯編,感測器,全華科技。2006 年4 月。
    [17]J. W. Dally W. F. Riley and K. G. McConell,Instrumentation for Engineering Measurements,開發。1994年。
    [18]林志隆,生活中的紅外線,科學發展雜誌400期,2006年4月。
    [19]張紹勳,人工智慧與專家系統,松崗。1993年8月。
    [20]江孟峰,專家系統導論工具應用,文魁,2002年11月。
    [21]蔡忠松,應用於家庭保全系統之低解析度紅外線影像辨識,中正大學電機工程研究所碩士論文,民國88年。

    下載圖示
    QR CODE