簡易檢索 / 詳目顯示

研究生: 潘重志
論文名稱: 金屬離子與摻雜濃度對BaZrO3導電的影響
The effects of cation and dopant ratio on the proton conductivity of BaZrO3
指導教授: 王禎翰
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 114
中文關鍵詞: 鈣鈦礦結構摻雜金屬固態電解質質子導體
英文關鍵詞: BaZrO3, dopant cations, solid electrolyte, proton conductivity
論文種類: 學術論文
相關次數: 點閱:212下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用實驗以溶膠-凝膠法(sol-gel)改良為較佳合成方式。首先,加入添加物金屬氧化物與利用NH4OH調控溶液pH值進行合成M-doped BaZrO3的粉末,之後再壓錠鍛燒高溫獲得樣品。在合成的各種變因中,如不同的添加物,pH值、鍛燒溫度的改變以及不同的鋪粉,有系統的測試,使得樣品有較高的密度、較大的晶粒尺寸、與更好的質子導電率。分別利用密度公式、XRD、SEM、EDS鑑定樣品密度、化學成分、顯微結構和摻雜比例,進行實驗的樣品分析。
    M-doped BaZrO3 (M3+ = Al3+、Ga3+、In3+、Y3+、La3+ 、Nd3+、 Sm3+、Gd3+、 Dy3+、Ho3+ 、Er3+)為一種質子導體,藉由摻雜金屬產生氧空穴,在含有水氣的環境下,氧空穴與水氣結合得到質子。探討質子導電率,利用DC二電極和AC四電極的EIS在飽和水氣的氮氣下進行質子導電率的測試,測量溫度為100-700℃。在相同條件下,探討摻雜金屬對質子導電率的影響與趨勢,再以Arrhenius方程式得到各種摻雜金屬的活化能與A值。由實驗結果推斷質子傳導與摻雜半徑有關,最適當的摻雜金屬離子(Ho3+、Er3+、Dy3+)擁有較佳的質子導電率。
    由於導電率與質子濃度有關,所以改變摻雜濃度。探討相同摻雜金屬,當濃度改變時對導電率影響。因此將較佳的三種金屬做摻雜濃度的改變BaZr1-xMxO3-α (0.10≦x≦0.25)。實驗結果顯示,摻雜濃度與導電率成反比,過多的質子濃度會互相trap住質子,使其較難傳導,降低導電率。因此最佳摻雜濃度為10 mol%。

    The effects of cations (M3+ = Al3+、Ga3+、In3+、Y3+、La3+ 、Nd3+、 Sm3+、Gd3+、 Dy3+、Ho3+ 、Er3+) and their dopant ratios (0.05 ~ 0.30) on the proton conductivity have been systematically investgated on BaZrO3-based materials.The ceramic powders were initially synthesized by sol-gel method and with small amount of metal oxide additive and pH-controlled condition and subsequently compressed to pellet sintered at higher temperature 1400 ℃. The density, chemical composition, microstructure and dopant ratios of samples are characterized by density function, XRD, SEM, EDX.
    The protonic conductivity was measured by DC 2-electrode and AC 4 electrode methods from 700 – 100℃ in the wet-N2 condition.The results showed that proton conductivities is related to radii of doping catios, and the cations of Ho3+、Er3+、Dy3+ are the most proper dopant catios with the best proton conductivity. The analysis for Arrhenius equations on proton conductivity further clarified that the pre-exponential factors have larger variance while the activation barriers are rather intact by the doped cations.
    The doping concentration, another key factor, is inversely proportional to the proton conductivity, attributable to that the excess cation concentrations trap proton and the best doping ratio is 10 mol%. The Arrhenius analysis identified that, on the other hand, activation barrier is the important factor in the dopant-ratio effect while pre-exponential factors are in variant by ratios.

    中文摘要-1 英文摘要-2 誌謝-4 目錄-5 圖表目錄-9 第一章固態氧化燃料電池介紹-15 1-0 緒論-15 1-1燃料電池-16 1-1-1燃料電池原理-16 1-1-2 燃料電池之種類-16 1-2固態氧化物燃料電池(SOFC)-19 1-2-1固態氧化物燃料電池簡介-19 1-2-2固態氧化物燃料電池組成-19 1-3固態氧化物電解質-20 1-3-1氧離子導體 -螢石結構 (fluorine, AO2)-22 1-3-2質子導體 -鈣鈦礦結構 (perovskite , ABO3)-22 1-3-3質子導體電解質傳導機制與相關研究-25 1-4 研究目的與方向-31 第二章 實驗方法-32 2-0實驗藥品列表-32 2-1粉末製備-34 2-1-1 溶膠-凝膠法(sol-gel,SG)-35 2-1-2-1 Pechini法:BaZr1-xMxO3-α粉末的合成-36 2-1-2-2 pH值法:BaZr1-xMxO3-α粉末的合成-38 2-1-2-3 摻雜濃度的改變-39 2-2 M-doped BaZrO3與BaZr1-xMxO3-α 0.05≦X≦0.30 錠片製備-40 2-2-1試片M-doped BaZrO3與BaZr1-xMxO3-α 0.05≦X≦0.30錠片條件-40 2-3樣品結構及組成分析-41 2-3-1試片密度分析-41 2-3-2 X光繞射儀 (X-ray diffraction analysis,XRD)-41 2-3-3 掃描式電子顯微鏡 (Scanning Electron Microscope,SEM)-43 2-3-4 能量散射光譜儀(Energy Dispersive Spectrometer,EDS)-44 2-3-5 熱重分析儀 (Thermogravimetry,TGA)-45 2-3-6導電測量裝置-46 2-3-7導電率分析-47 2-3-8活化能分析-49 第三章 結果與討論-50 3-1 實驗部分-50 3-1-1 實驗方法改良-50 3-1-2 添加物-51 3-1-3 控制鍛燒溫度-53 3-1-4 調控pH值-54 3-1-5 鍛燒時間與鋪粉的改變 -58 3-2 導電趨勢-61 3-2-1 實驗動機-61 3-2-2 不同摻雜金屬的比較-62 3-2-2-1 XRD比較-62 3-2-2-2 密度-65 3-2-2-3 顯微結構分析-65 3-2-2-4 元素組成與分佈分析-70 3-2-2-5 阻抗圖譜分析導電趨勢-77 3-2-2-6 熱重儀的分析-86 3-2-3 Dy、Er、Ho不同濃度的比較-87 3-2-3-1 XRD比較-87 3-2-3-2 顯微結構的比較-89 3-2-3-3 元素組成與分佈分析-93 3-2-3-4 總導電率活化能、A值與分析阻抗圖譜分析導電趨勢-98 第四章 結論-107 第五章 未來展望-109 文獻-110

    1. Dissemination of IT for the Promotion of Materials Science (DoITPoMS).
    2. 伍永福, 趙玉萍,彭军,中國論文科技在線 2006.
    3. 黃炳照, 鄭銘堯,.化工技術 2002, 111, 135.
    4. P.Zegers, Journal of Power Sources 1990, 29, 133-142.
    5. Hydrogen and Fuel Cells Program. October 2006.
    6. http://www.azocleantech.com/article.aspx?Articleid=70.
    7. Nernst, W., Elektrochem 1899, 6, 41.
    8. Stöver, D.,Ceramics International 2004, 30, 1107.
    9. Gross, M. D. V., J. M.; Gorte, R. J, J.Mater.Chem 2007, 17, 3071-3077.
    10. McIntosh, S. G., R. J., Chem. Rev 2004, 104, 4845-4865.
    11. Jacobson, A. J., Chem. Mater. 2010, 22, 660-674.
    12. Iwahara, H. E., T.; Uchida, H.; Maeda, N.,Solid State Ionics 1981, 3-4, 359-363.
    13. Iwahara, H.,Solid State Ionics 1996, 9-15, 86-88.
    14. Schober, T.,Solid State Ionics 2003, 162-163, 277-281.
    15. Kreuer, K. D.,Solid State Ionics 1999, 125, 285-302.
    16. Malavasi, L. F., C. A. J.; Islam, M. S.,Chem. Soc. Rev 2010, 39, 4370-4387.
    17. Islam, M. S. S., P. R.; Tolchard, J. R.; Dinges, T.,Dalton Trans 2004, 3061-3066.
    18. HAILE, S. M. S., G.; RYU, K. H.,J,journal of materails science 2001, 36,1149-1160.
    19. Kreuer, K. D.,Annu. Rev. Mater. Res 2003, 33, 333-359.
    20. Islam, M. S.,J. Mater. Chem 2000, 10, 1027-1038.
    21. Barison, S. B., M.; Cavallin, T.; Doubova, L.; Fabrizio, M.; Mortalo, C.; Boldrini, S.; Malavasic, L.; Gerbas, R.,J. Mater. Chem 2008, 18, 5120-5128.
    22. Fabbri, E. P., D.; Traversa, E.,Chem. Soc. Rev. 2010, 39, 4355-4369.
    23. Zuo, C. Z., S.; Liu, M.; Hatano, M.; Uchiyama, M.,Adv. Mater 2006, 18, 3318-3320.
    24. Katahira, K. K., Y.; Shimura, T.; Iwahara, H., Solid State Ionics 2000, 138, 91-98.
    25. Haile, S. M.,Elsevier Science 2003, 6, (3), 24-29.
    26. Merinova, B. G., W., journal of chemical physics 2009, 130, 194707.
    27. R.A. Daviesa, M. S. I., J.D. Galeb,Solid State Ionics 1999, 126 ,323-335.
    28. Kreuer, K. D., Annu. Rev. Mater. Res 33, 333-359.
    29. Pergolesi, D. F., E.; D.Epifanio, A.; Bartolomeo, E. D.; Tebano, A.; Sanna, S.; Licoccia, S.; Balestrino, G.; Traversa, E.,Nature materials 2010, 9, 846-852.
    30. Ahmed, I. K., F. G.; Rahman, S. M. H.; Steegstra, P.; Eriksson, S. G.; Ahlbergc, E.,Journal of The Electrochemical Society 2010, 157, 1819-1824.
    31. Ricote, S. B., N.; Caboche, G.,, Solid State Ionics 2009, 180, 990-997.
    32. Braun, A. D., S.; Ried, P.; Embs, J. J Appl Electrochem 2009, 39, 471-475.
    33. Iguchi, F. N., Y.; Sata, N.; Yugami, H.,Solid State Ionics 2011, 192, 97-100.
    34. Istaq Ahmed , Sten-G. Eriksson , Elisabet Ahlberg , Christopher S. Knee,Solid State Ionics 2008, 179, 1155-1160.
    35. S. Imashuku, z. T. U., Y. Nose, G. Taniguchi, Y. Ito, and Y. Awakura, Journal of The Electrochemical Society 2009, 156, 1-8.
    36. Fabbri, E. P., D.; Licoccia, S.; Traversa, E.,Solid State Ionics 2010, 181,1043-1051.
    37. http://www.webelements.com/.
    38. Shannon, R. D., Acta Crystallogr 19776, 751, SA32.
    39. Pechini, M., U.S. Patent 1967, 3, 697.
    40. Yamazaki, Y. H.-S., R.;Haile, S. M.,Chemistry of Materials 2009, 21, (2755-2762).
    41. 林麗娟, 工業材料86期, 101-109.
    42. http://www.purdue.edu/rem/rs/sem.htm.
    43. Macdonald, J. R.,Solid Materials And Systems 1987.
    44. Guo, X. W., R.,, Progress in Materials. Science 2006, 151-210.
    45. Iguchi, F., Sata, N., Tsurui, T. and Yugami, H.,Solid State Ionics 2007, 178, 691.
    46. Jianhua Tong, D. C., Lisa Bernau, Michael Sanders , Ryan O’Hayre,J. Mater. Chem 2010,, 20, 6333-6341.
    47. Dongyun Gao, R. G.,Journal of Alloys and Compounds 2010, 493, 288-293.
    48. Haile, P. B. a. S. M. J. Am. Ceram. Soc., 2005, 88, 2362-2368.
    49. Yoshihiro Yamazaki, R. H.-S., and Sossina M Haile, Chem. Mater. 2009, 21, 2755.
    50. Peter Babilo, T. U., Sossina M. Haile,J. Mater. Res., 2007, 22.
    51. Iguchi, F. S., N.; Tsurui, T.; Yugami,H.,Solid State Ionics 2007, 178, 691-695.
    52. J. Wu, S. M. W. a. S. B., S. M. Haile, journal of physics 2005, 97.
    53. Pasierb, P. M. W. K., S.; Rekas, M.,Journal of Power Sources 2009, 194, 31-37.
    54. Wu, J. D., R. A.; Islam, M. S.; Haile, S. M., Chem. Mater. 2005, 17, 846-851.
    55. Donglin Han, Y. N., Kozo Shinoda,Tetsuya Uda, Solid State Ionics 2012, 213, 2-7.

    下載圖示
    QR CODE