簡易檢索 / 詳目顯示

研究生: 陳奕帆
Chen-yi-fan
論文名稱: 幾何文本敘寫方式對國三學生閱讀理解的影響
The effect of text descriptions on ninth graders' reading comprehension of geometry proof
指導教授: 吳昭容
學位類別: 碩士
Master
系所名稱: 教育心理與輔導學系
Department of Educational Psychology and Counseling
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 99
中文關鍵詞: 文本敘寫方式幾何證明閱讀理解
英文關鍵詞: text descriptions, geometry proof, reading comprehension
論文種類: 學術論文
相關次數: 點閱:196下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以兩個實驗操弄文本變項來探討不同幾何證明文本的敘寫方式對國三學生閱讀理解的影響。實驗一在同樣的幾何證明中,操弄中介步驟有、無提示語,亦即中介步驟成立的理由,以瞭解對受試者在閱讀理解測驗得分的影響。該研究以北部一所國中四個班級之129位國三學生為對象,受試者採班級為單位隨機分為有、無提示語二個組別後,以團體筆試方式瞭解研究對象對證明本文的閱讀理解情形。單因子變異數分析發現文本有提示語的受試者在問卷總分、缺漏性質,及事實性判斷等三個分數得分平均值顯著高於無提示語文本,而以積差相關求得研究對象在與幾何證明有關單元之在校成績和問卷總得分之相關均達顯著,且該二相關值之間無顯著差異,表示提示語整體而言提升了有提示語組的表現。實驗二旨在操弄幾何證明題目中,已知的敘寫方式及求證的表徵方式對學生閱讀幾何證明文本的影響,實驗以30位國三學生為對象,針對證明的已知及求證,進行個別的訪談,統計上則以卡方檢定檢驗學生在不同版本構圖正確的百分比,及學生主觀認為好懂的敘寫方式是否有不同,結果顯示,學生在構圖正確百分比及二種版本已知述敘的主觀偏好,僅第四題達到統計上顯著,而對於第三種敘述方式是否較前二種版本好懂的認定,四個幾何證明題均達到達著,但方向不一致。根據這二個實驗的結果,研究者認為中介步驟成立的理由可橋接證明的前提、性質,與結論,協助學生確認與該性質有關的理論脈絡,並瞭解特定證明過程的來源。而以作圖方式敘寫可能有助於理解語意線索較少的術語,使構圖的過程正確,幫助學生對圖形及整體性質的瞭解。

    The purpose of this study is to explore different text descriptions of geometry proof on students’ reading comprehension. That involved two experimental designs. The operation of Experiment 1 was based on the cues of property. 129 students from four classes for the 9th grade students of one junior high school in Taipei participated in Experiment 1. They were randomly assigned into 2 groups according to the classes. And a written test was held to explore the students’ performance and comprehension. The quantitative analyses are showed through ANOVA and Pearson product-moment r. The results show that students in group with cues of property significantly get higher grades on questionnaires than that with no cues, and correlation between students’ math scores at school and scores on the questionnaires wasn’t significant. In addition, the operations of Experiment 2 were the different descriptions of premise and conclusion. 30 of 9th grade students were interviewed. The data are analyzed using Chi-square. The results show that besides proof 4, there is no difference between students’ performance on constructing figures and between the comparison of the first two descriptions. And students’ perception to the third descriptions varied significantly in terms of four proofs. According to the results, we propose that cues of property help students to make sure the contexure of the text and to know the causes of the steps, and if students can construct figures correctly, they may get better understanding of the whole property.

    目錄 vii 表次 ix 圖次 xi 緒論 1 幾何思維 3 數學證明 9 閱讀理解 12 前導性研究 19 實驗一 25 對象 25 工具 26 程序 32 結果分析 33 討論 36 實驗二 39 對象 39 工具 40 程序 43 結果分析 46 討論 59 綜合討論 63 研究結論 63 研究之限制與啟示 69 未來研究之建議 72 參考文獻 75 中文部分 75 西文部分 76 附錄 附錄一 幾何證明閱讀預試文本 82 附錄二 預試題本題目圈選情形 89 附錄三 幾何證明閱讀正式文本 91 附錄四 訪談步驟與提問 96

    中文部分
    王繹婷(2007)。中學生閱讀幾何證明的理解策略。國立彰化師範大學數學系碩士學位論文,彰化市。
    左台益(2002)。van Hiele模式之國中幾何教材設計。中等教育,53(3),44-53。
    李宜芬(2002)。國三學生突破因附圖造成之論證障礙的學習歷程之研究。國立臺灣師範大學數學系碩士學位論文,台北市。
    吳慧真(1997)。幾何證明探究教學之研究。國立臺灣師範大學數學系碩士班碩士學位論文,台北市。
    林福來(2001)。青少年的數學概念學習研究-子計劃十四:青少年數學論證能力發展研究。行政院國家科學委員會專題研究計畫期中報告。
    林清山、程炳林(1995)。國中生自我調整學習因素與學習表現之關係暨自我調整的閱讀理解教學策略效果之研究。教育心理學報, 28,15-58。
    林蕙君(1995)。閱讀能力、說明文結構對國小高年級學生的閱讀理解及閱讀策略使用之影響研究。新竹師院國民教育研究所論文集,第1集,57-85。
    柯華葳(1999)。閱讀理解困難篩選測驗。中國測驗學會測驗年刊,46(2),1-11。
    柯華葳、詹益綾(2007)。國民中學閱讀推理篩選測驗編製報告。測驗學刊,54(2),429-449。
    馬秀蘭、吳德邦(2000)。An introduction of the van Hiele model of geometric thought。嶺東學報,11, 289-310。
    秦麗花(2006)。從數學閱讀的特殊技能看兒童數學閱讀的困難與突破。特殊教育季刊,99,1-12。
    秦麗花、邱上真(2004)。數學文本閱讀理解相關因素探討及其模式建立之研究--以角度單元為例。特殊教育與復健學報 12,99-121。
    翁立衛(2008)。圖在幾何解題中所扮演的角色。科學教育,308,7-15。
    張景媛(民84) 。國中生建構幾何概念之研究暨統整式合作學習的幾何教學策略效果之評估。教育心理學報,28,99-144。
    教育部(2008)。國民中小學九年一貫課程綱要。台北市:教育部。
    陳李綢(1992)。認知發展與輔導,台北市:心理出版社。
    楊凱琳(2003)。建構中學生對幾何證明閱讀理解的模式。國立臺灣師範大學數學系博士學位論文,台北市。
    葉明達、林冠群、陳彥廷(2007)。數學論證的判讀歷程其及教學設計。科學教育研究與發展季刊,48,89-106。
    鄭英豪(2001)。青少年圖形命題論證教學的研究(1/4)。行政院國家科學委員會專題研究計畫期中進度報告。
    蔡亞倫(2001)。學前與國小一年級兒童數學符號表徵能力與數學能力的關係。國立中正大學心理學研究所碩士論文,嘉義市。
    譚寧君(1993)。兒童的幾何觀--從van Hiele 幾何思考的發展模式談起。國民教育,33(5、6), 12-17。
    蘇宜芬(2004)。閱讀理解的影響因素及其在教學上的意義。教師天地,129,21-28。

    西文部分
    Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215-241.
    Adams, T. L. & Lowery, R. M. (2007). An analysis of children’s strategies for reading mathematics. Reading & Writing Quarterly, 23, 161-177.
    Brandell, J. H. (1994). Helping students write paragraph proofs in Geometry. The Mathematics Teacher, 87(7), 498-502.
    Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D.Pimm (Ed.), Mathematics, Teachers, and Children (pp.216-238). London: Hodder & Stoughton.
    Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grows (Ed.), Hand book of research on mathematics teaching and learning (pp. 420-464). New York: Macmillan.
    Chazan, D. (1993). High school geometry students’ justification for their views of empirical evidence and mathematical proof. Educational studies in mathematics, 24, 359-387.
    Chall, J. S. (1996). Stages of reading development (2nd ed.). Fort Worth: Harcourt Brace College Publishers.
    Cheng, P. C. H. (1996). Functional roles for the cognitive analysis of diagrams in problem solving. In G. W. Cottrell (Eds.), Proceeding of the 18th Annual of the cognitive science society. (pp. 207-212). Hillsdale, NJ: Lawrence Erlbaum.
    Carney, N. R., & Levin, R. J. (2002). Pictorial illustrations still improve students' learning from text. Educational Psychology Review, 14(1), 5-26.
    Dee-Lucas, D., & Larkin, J. H. (1990). Organization and comprehensibility in scientific proofs, or “Consider a particle”. Journal of Educational Psychology, 82(4), 701-714.
    Duval, R. (1995). Geometrical Pictures: Kinds of Representation and Specific Processings. In R. Sutherland & J.Mason (Eds.), Exploiting Mental Imagery with computers in Matehmatics Education(pp.142-157). Berlin: Springer.
    Duval, R. (1999). Representation, vision and visualization: Cognitive functions in mathematical thinking. Basic Issue for Learning, 21, 3-26.
    Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana & V. Villani (Eds. ), Perspectives on the Teaching of Geometry for the 21st centry(pp. 37-52). An ICMI Study.
    Duval, R. (2000). Basic issues for research in mathematics education. Proceedings of the 25 th Conference of the International Group for the Psychology of Mathematiccs Education, 1, 55-69.
    Duval. R. (2002). Proof understanding in mathematics: What ways for students? In F. L. Lin (Ed.), Proceeding of International Conference on Mathematics: Understanding Proving and Proving to understand (pp. 61-77). Taipei, Taiwan: National Science Council and National Taiwan Normal University.
    Esty, W. W. (1991). The language of mathematics, Version 8. Bozeman,Montana: Montana State University.
    Gangé, E. D., Yekoovich, C. W., & Yekovich, F. R. (1993). The cognitive psychology of school learning(2nd. Ed.). New York: Harper Collins College Publishers.
    Hoffer, A. (1981). Geometry is more than proof. Mathematics Teacher, 74, 11-18.
    Hoffer, A. (1983). van Hiele based research. In R. Lesh & M. Landau(Eds.), Acquisition of mathematical concepts and processes (pp. 205-228). New York, NY: Academic Press.
    Holyes, C. (1997). The curricular shaping of students’ approaches to proof. For the Learning of Mathematics, 17(1), 7-16.
    Healy L. & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396-428.
    Hiebert, E. H., & Raphael T. E. (1996). Psychological perspectives on literacy and extensions to educational practice. In Berliner, D. C., & Calfee, R. C. (Eds.), Handbook of Educational Psychology (pp. 550-602). New York: Simon & Schuster Macmillan.
    Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1), 6-13.
    Kintsch, W. (1998). Comprehension: A paradigm for cognition. New York:Cambridge University Press.
    Lowe, R. K. (1994). Selectivity in diagrams: reading beyond the lines Educational Psychology, 14(4), 467-491.
    Lawson, M., & Chinnappan, M. (2000). Knowledge connectedness in geometry problem solving. Journal for Research in Mathematics Education, 31(1), 26-43.
    Lin, F. L. (2005). Modeling students’ learning on mathematical proof and refutation. Proceedings of the 29 th Conference of the International Group for the Psychology of Mathematiccs Education, Vol. 4 ( pp. 3-18). Melbourne.
    Lager, G. A. (2006). Types of mathematics-language reading interactions that unnecessarily hinder algebra learning and assessment. Reading Pshchology, 27, 165-204.
    Lin, F. L., Cheng, Y. H., & linfl team (2003) . The competence of geometric argument in Taiwan adolescents. International Conference on Science & Mathematics Learning, 12, 16-18。
    Lin, F. L. & Yang, K. L. (2007). The reading comprehension of geometric proofs: The contribution of knowledge and reasoning. International Journal of Science and Mathematics Education, 5(4), 729-754.
    Mason, R. T. & McFeetors, P. J. (2002). Interactive writing in mathematics class: Getting started. Mathematics Teacher, 95(7), 532-536.
    Moore R. C. (1994). Making the transition to formal proof. Educational Studies in Mathematics, 27, 249-266
    Miyazaki, M. (2000). Levels of proof in lower secondary school mathematics: As steps from ad inductive proof to an algebraic demonstration. Educational Studies in Mathematics, 41(1), 47-68.
    Mayer R. E. (1992). Thinking, Problem solving, Cognition. New York: Freeman.
    O’Halloran, K. L. (2000). Classroom discourse in mathematics: A multisemiotic analysis. Linguistics and Education, 10(3), 359-388.
    Österholm, M. (2005). Characterizing reading comprehension of mathematics texts. Educational Studies in Mathematics, 63, 325-346.
    Polya, J. (1957). How to solve it. Princeton, NJ: Princeton University.
    Pearson, P. D., & Johnson, D. D. (1978). Teaching Reading Comprehension. New York:Holt, Rinehart & Winston.
    Parzysz, B. (1991). Representation of space and students' conception at high school level. Educational Studies in Mathematics, 22, 575-193.
    Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem? Journal for Research in Mathematics Education, 34(1), 4-36.
    Schoenfeld, A. H. (1994). Reflections on doing and teaching mathematics. In A. H. Schoenfeld(ED.), Mathematical Thinking and Problem Solving(pp. 53-70). Hillsdale, NJ: Erlbaum.
    Suydam, M. N. (1985). The shape of instruction in geometry: Some highlights for research. Mathematics Teacher, 78, 481-486.
    Tall, D. (1989). The nature of mathematical proof. Mathematics Teaching, 127, 28-31.
    van den Broek, P, & Kremer, K. E. (2000). The mind in action:What it means to comprehend during reading. In B. M. Taylor, M. F. Graves, & P. van den Broek (Eds.) Reading for meaning:Fostering comprehension in the middle grades, (pp. 1-31). DE, Newark:International Reading Association.
    Vilenius-Tuohimaa, P. M., Aunola, K., & Nurmi, J. (2008). The association between mathematical word problems and reading comprehension. Educational Pshchology, 28(4), 409-426.
    Yang, K. L., & Lin, F. L. (2008). A model of reading comprehension of geometry proof. Educational Studies in Mathematics Education, 67(1), 59-76.
    Yang, K. L., Lin, F. L., & Wang, Y, T. (2008). The effects of proof features and question probing on understanding geometry proof. Contemporary Education Reaserch Quarterly, 16(2), 77-100.

    下載圖示
    QR CODE