簡易檢索 / 詳目顯示

研究生: 陳蓉萱
CHEN, JUNG-HSUAN
論文名稱: 一、重氮化合物與亞胺分子製備全取代之1,2,3-三唑 二、有機催化連鎖Michael加成/半縮醛化反應 三、(±)-Viroallosecurinine的全合成
1. An Efficient and Convenient Synthesis of Fully-Substituted 1,2,3-Triazole 2.Organocatalytic Domino Michael /Hemiacetalization of beta-Tetralone and alpha,beta-Unsaturated Aldehydes 3. Total Synthesis of (±)-Viroallosecurinine
指導教授: 陳焜銘
Chen, Kwun-Min
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 130
中文關鍵詞: 環加成反應三唑有機催化連鎖反應全合成Viroallosecurinine
英文關鍵詞: cycloaddition, triazole, organocatalysis, domino reactions, total synthesis, viroallosecurinine
論文種類: 學術論文
相關次數: 點閱:321下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文有三個研究主題,第一部分為全取代之1,2,3-三唑分子的合成。1,2,3-三唑是具生物活性分子的重要架構,文獻中,以炔類及疊氮分子為反應物,進行[3+2]環加成反應而合成之;然而,合成全取代之1,2,3-三唑的方法,有的步驟繁複,或者需金屬催化劑的參與及高溫條件,反應方可進行。在此,我們開發新穎的反應類型,以重氮化合物與亞胺分子為起始物,在DBU的作用下,於溫和的反應條件,一步反應得到[3+2]環加成產物-1,4,5-全取代-1,2,3-三唑,產率為60-95%;歸納實驗結果,推測合理的反應機構;此外,產物之雜環架構中的四號位置為酯基,可經由不同的化學反應,轉換為多樣化之官能基,為此反應增添合成上的應用性。
    第二部分以不對稱有機催化之連鎖反應,合成高鏡像選擇性之苯色烯衍生物。含氧原子的六員雜環架構,常見於天然物及藥物分子,有效建構它們的立體選擇性,在合成化學領域非常重要。本論文發展新穎的連鎖Michael加成 ∕ 半縮醛化反應,以-四氫萘酮和,-不飽和醛類為起始物,在L-脯胺酸衍生之有機催化劑的作用下,於最佳化的反應條件,製備苯色烯衍生物,高達99%之產率及80-96% ee的鏡像選擇性;將產物進一步氧化為-環戊內酯後,經X-ray單晶解析,確認新建立之立體中心為(S)-form,並推測了合理的反應機構,此連鎖反應提供合成高鏡像選擇性之含氧六員雜環分子的新途徑。
    第三部分為天然物(±)-Viroallosecurinine的全合成,由美國Colorado State University的John L. Wood教授指導完成。以-環戊內酯為起始物,經由15個步驟,成功合成天然物(±)-Viroallosecurinine,總產率約為5%;其中,與苯基丙烯醇的連鎖銠催化之O-H嵌入 ∕ Claisen rearrangement ∕ 1,2-allyl轉移反應,可建構具有立體中心的三級醇,有效控制其立體化學,進而合成所有的Securinega生物鹼,此為本合成策略之優勢,最終合成之(±)-Viroallosecurinine的NMR光譜,與文獻比對後確認之。

    There are three parts of research topics in this thesis. The first topic is an alternative and direct access to fully-substituted 1,2,3-triazoles. Treatment of diazo compound with 4-methoxyaniline derived aryl imines in the presence of DBU provided ethyl 1-(4-methoxyphenyl)-5-phenyl-1H-1,2,3-triazole-4-carboxylate in good to high yields. A reasonable mechanism is proposed that involves the addition of an imine nitrogen atom to the terminal nitrogen atom of the diazo compound, followed by aromatization to give the 1,2,3-triazole. The presence of the 4-carboxy group is advantageous as it can be easily transformed into other functional groups.
    The second topic is the synthesis of benzo[f]chromenols via asymmetric organocatalytic domino Michael/Hemiacetalization process. Treatment of -tetralones with ,-unsaturated aldehydes in the presence of diphenylprolinol silyl ether gave 2,3,5,6-tetrahydro-1-alkyl/aryl-1H-benzo[f]chromen-3-ol derivatives with high to excellent chemical yields (50-99%) and high levels of enantioselectivities (up to 96% ee). The stereochemistry of newly generated stereogenic center is determined as (S)-form by X-ray analysis of oxidized chromenol. A reasonable mechanism is proposed that undergoes iminium ion-catalyzed Michael addition followed by hemiacetalization to complete the domino sequence.
    The third topic is the total synthesis of (±)-Viroallosecurinine, which is supervised by Professor J. L. Wood in Colorado State University. Total Synthesis of (±)- Viroallosecurinine is described that utilize a rhodium carbenoid-initiated O-H insertion/Claisen rearrangement/1,2-allyl migration domino process for the stereoselective introduction of the tertiary alcohol moiety. The strategy is flexible and allows access to other members of the Securinega alkaloids. (±)-Viroallosecurinine is synthesized from -valerolactone in 15 steps with 5% overall yield.

    第一章 重氮化合物與亞胺分子製備全取代之1,2,3-三唑 1-1 序論……………………………………………………………………………….1 1-1-1 1,2,3-三唑分子之簡介……………………………………………………...1 1-1-2 1,2,3-三唑分子之合成方法………………………………………………...2 1-1-3 全取代之1,2,3-三唑的合成途徑…………………………………………..9 1-1-3.1 Ru-catalyzed Azide-Alkyne Cycloaddition (RuAAC)……………10 1-1-3.2 5-鹵素-1,4-雙取代-1,2,3-三唑之合成……………………………..11 1-1-3.3 以有機金屬耦合反應於1,2,3-三唑上加入新取代基……………..13 1-1-4 重氮(diazo)化合物之反應類型…………………………………………...17 1-1-5 研究動機…………………………………………………………………..19 1-2 結果與討論……………………………………………………………………...21 1-2-1 以不同試劑進行[3+2]環加成反應………………………………………22 1-2-2 以不同反應溶劑進行[3+2]環加成反應…………………………….…...24 1-2-3 以不同亞胺分子之氮上取代基進行[3+2]環加成反應…………………25 1-2-4 [3+2]環加成反應之最佳化………………………………………………26 1-2-5 不同取代之[3+2]環加成反應……………………………………………28 1-2-6 反應機構之探討………………………………………………………….31 1-2-7 全取代三唑產物之應用………………………………………………….32 1-2-8 結論……………………………………………………………………….34 1-3 實驗步驟及光譜數據………………………………………………………….35 1-3-1 分析儀器及基本實驗操作……………………………………………….35 1-3-2 N-phenylcamphorpyrazolidinone derived -acetamide之製備………..…36 1-3-3 [3+2]環加成反應之一般步驟……………………………………………37 1-3-4 產物的光譜數據………………………………………………………….37 1-4 參考文獻………………………………………………………………………...49 第二章 有機催化連鎖Michael加成/半縮醛化反應 2-1 序論…………………………………….………………………………………..53 2-1-1 前言……………………………………………………………………….53 2-1-2 以有機催化之Stetter反應合成含氧六員雜環分子……………………..56 2-1-3 以有機催化之Oxo-Hetero-Diels-Alder反應合成含氧六員雜環分子….58 2-1-4 有機催化之連鎖反應的介紹…………………………………………….62 2-1-5 以有機催化之連鎖反應合成含氧六員雜環分子……………………….65 2-1-6 -四氫萘酮在合成上的應用…………………………………………..…67 2-1-7研究動機………………………………………………………………….70 2-2 結果與討論………………….…………………………………………………..71 2-2-1 溶劑與有機催化劑之探討……………………………………………….71 2-2-2 添加劑之探討…………………………………………………………….73 2-2-3 反應條件之最佳化……………………………………………………….74 2-2-4 不同取代之連鎖Michael加成/半縮醛化反應………………………..…76 2-2-5 反應機構之探討………………………………………………………….79 2-2-6 苯色烯產物的結構及立體選擇性之鑑定……………………………….80 2-2-7 苯色烯產物之立體組態鑑定…………………………………………….83 2-2-8 結論……………………………………………………………………….87 2-3 實驗步驟及光譜數據…………………………………………………………...89 2-3-1 分析儀器及基本實驗操作……………………………………………….89 2-3-2 連鎖Michael加成/半縮醛化反應之一般步驟……………………..……91 2-3-3 產物的光譜數據…………………………………………………….……92 2-4 參考文獻………………………………………………………………….……111 第三章 (±)-Viroallosecurinine的全合成 3-1 前言…………………………………………………………………………...115 3-2 Viroallosecurinine的全合成…………………………………………….……117 3-2-1 Viroallosecurinine的逆合成分析……………………………………….117 3-2-2 合成亞胺中間體………………………………………………………...118 3-2-3 合成Ring-Closing Metathesis之前驅物………………………………..121 3-2-4 完成(±)-Viroallosecurinine之全合成…………………………………...125 3-2-5 結論……………………………………………………………………...126 3-3 參考文獻……………………………………………………………………...129

    第一章 重氮化合物與亞胺分子製備全取代之1,2,3-三唑
    1. Camarasa, M. J.; Perez-Perez, M. J.; San-Felix, A.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1992, 35, 2721.
    2. Alvarez, R.; Velazquez, S.; San, F.; Aquaro, S.; De, C.; Perno, C. F.; Karlsson, A.; Balzarini, J.; Camarasa, M. J. J. Med. Chem. 1994, 37, 4185.
    3. Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.; Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953.
    4. Komine, T.; Kojima, A.; Asahina, Y.; Saito, T.; Takano, H.; Shibue, T.; Fukuda, Y. J. Med. Chem. 2008, 51, 6558.
    5. Giffin, M. J.; Heaslet, H.; Brik, A.; Lin, Y.-C.; Cauvi, G.; Wong, C.-H.; McRee, D. E.; Elder, J. H.; Stout, C. D.; Torbett, B. E. J. Med. Chem. 2008, 51, 6263.
    6. (a) Hüisgen, R. Proc. Chem. Soc. 1961, 357. (b) Hüisgen, R. In 1,3-dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984, pp 1-176.
    7. (a) Tornoe, C. W.; Meldal, M. Peptidotriazoles: Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions on Solid-Phase, Peptides 2001, Proc. Am. Pept. Symp.; American Peptide Society and Kluwer Academic Publishers, San Diego, 2001; pp. 263–264. (b) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. (c) Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952.
    8. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004.
    9. (a) Bodine, K. D.; Gin, D. Y.; Gin, M. S. J. Am. Chem. Soc. 2004, 126, 1638. (b) Dondoni, A.; Giovannini, P. P.; Massi, A. Org. Lett. 2004, 6, 2929. (c) Kuijpers, B. H. M.; Groothuys, S.; Keereweer, A. (B.) R.; Quaedflieg, P. J. L. M.; Blaauw, R. H.; van Delft, F. L.; Rutjes, F. P. J. T. Org. Lett. 2004, 6, 3123.
    10. (a) Tsarevsky, N. V.; Sumerlin, B. S.; Matyjaszewski, K. Macromolecules 2005, 38, 3358. (b) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; FrTchet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem. 2004, 116, 4018.; Angew. Chem. Int. Ed. 2004, 43, 3928.
    11. Mocharla, V. P.; Colasson, B.; Lee, L. V.; Röper, S.; Sharpless, K. B.; Wong, C.-H.; Kolb, H. C. Angew. Chem. Int. Ed. 2005, 44, 116.
    12. (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. 2002, 114, 2708; Angew. Chem. Int. Ed. 2002, 41, 2596. (b) Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210.
    13. Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127, 15998.
    14. Boren, B. C.; Narayan, S.; Rasmussen, L. K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 8923.
    15. Amantini, D.; Fringuelli, F.; Piermatti, O.; Pizzo, F.; Zunino, E.; Vaccaro, L. J. Org. Chem. 2005, 70, 6526.
    16. D’Ambrosio, G.; Fringuelli, F.; Pizzo, F.; Vaccaro, L. Green Chem. 2005, 7, 874.
    17. Majireck, M. M.; Weinreb, S. M. J. Org. Chem. 2006, 71, 8680.
    18. Kuijpers, B. H. M.; Dijkmans, G. C. T.; Groothuys, S.; Quaedflieg, P. J. L. M.; Blaauw, R. H.; van Delft, F. L.; Rutjes, F. P. J. T. Synlett 2005, 3059.
    19. Li, L.; Zhang, G.; Zhu, A.; Zhang, L. J. Org. Chem. 2008, 73, 3630.
    20. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2010/
    21. Deng, J.; Wu, Y.-M.; Chen, Q.-Y. Synthesis 2005, 2730.
    22. Chuprakov, S.; Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Org. Lett. 2007, 9, 2333.
    23. (a) Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem. 2009, 121, 207; Angew. Chem. Int. Ed. 2009, 48, 201. (b) Ackermann, L.; Vicente, R.; Born, R. Adv. Synth. Catal. 2008, 350, 741.
    24. Krasiński, A.; Fokin, V. V.; Sharpless, K. B. Org. Lett. 2004, 6, 1237.
    25. Zhang, X.; Hsung, R. P.; Li, H. Chem. Commun. 2007, 2420.
    26. (a) Zhao, Y.; Ma, Z.; Zhang, X.; Zou, Y.; Jin, X.; Wang, J. Angew. Chem. Int. Ed. 2004, 43, 5977. (b) Jiang, N.; Wang, J. Tetrahedron Lett. 2002, 43, 1285.
    27. (a) Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2007, 129, 10054. (b) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2005, 127, 9360. (c) Yao, W.; Wang, J. Org. Lett. 2003, 5, 1527. (d) Sarabia, F.; López-Herrera, F. J. Tetrahedron Lett. 2001, 42, 8801.
    28. (a) Lu, Z.; Zhang, Y.; Wulff, W. D. J. Am. Chem. Soc. 2007, 129, 7185. (b) Williams, A. L.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 1612. (c) Loncaric, C.; Wulff, W. D. Org. Lett. 2001, 3, 3675.
    29. (a) Zhu, S.-F.; Chen, C.; Cai, Y.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2008, 47, 932. (b) Chen, C.; Zhu, S.-F.; Liu, B.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 12616. (c) Maier, T. C.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 4594.
    30. (a) Deng, Q.-H.; Xu, H.-W.; Yuen, A. W.-H.; Xu, Z.-J.; Che, C.-M. Org. Lett. 2008, 10, 1529. (b) Lee, E. C.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 12066. (c) Liu, B.; Zhu, S.-F.; Zhang, W.; Chen, C.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 5834.
    31. (a) Taber, D. F.; Tian, W. J. Org. Chem. 2007, 72, 3207. (b) Davies, H. M. L.; Jin, Q. J. Am. Chem. Soc. 2004, 126, 10862.
    32. (a) Lu, T.; Song, Z.; Hsung, R. P. Org. Lett. 2008, 10, 541. (b) Marcoux, D.; Charette, A. B. Angew. Chem. Int. Ed. 2008, 47, 10155. (c) Thompson, J. L.; Davies, H. M. L. J. Am. Chem. Soc. 2007, 129, 6090. (d) Hashimoto, T.; Naganawa, Y.; Kano, T.; Maruoka, K. Chem. Commun. 2007, 5143. (e) Honma, M.; Sawada, T.; Fujisawa, Y.; Utsugi, M.; Watanabe, H.; Umino, A.; Matsumura, T.; Hagihara, T.; Takano, M.; Nakada, M. J. Am. Chem. Soc. 2003, 125, 2860. (f) Haddad, N.; Galili, N. Tetrahedron: Asymmetry 1997, 8, 3367.
    33. (a) Krishna, P. R.; Sekhar, E. R.; Mongin, F. Tetrahedron Lett. 2008, 49, 6768. (b) Kano, T.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2006, 128, 2174.
    34. Liu, Z.; Shi, F.; Martinez, P. D. G.; Raminelli, C.; Larock, R. C. J. Org. Chem. 2008, 73, 219.
    35. Regitz, M.; Schoder, W. Synthesis 1985, 178.
    36. Kiselyov, A. S. Tetrahedron Lett. 2006, 47, 2631.
    37. Yang, K.-S.; Chen, K. Org. Lett. 2000, 2, 729.
    38. (a) Donohoe, T. J.; Fishlock, L. P.; Basutto, J. A.; Bower, J. F.; Procopiou, P. A.; Thompson, A. L. Chem. Commun. 2009, 3008. (b) Donohoe, T. J.; Fishlock, L. P.; Procopiou, P. A. Org. Lett. 2008, 10, 285.
    39. Haddad, N.; Galili, N. Tetrahedron: Asymmetry 1997, 8, 3367.
    40. 國立台灣師範大學碩士論文,劉軒如,98年。
    第二章 有機催化連鎖Michael加成/半縮醛化反應
    1. Shen, H. C. Tetrahedron 2009, 65, 3931.
    2. (a) Hardcastle, I. R.; Cockcroft, X.; Curtin, N. J.; El-Murr, M. D.; Leahy, J. J. J.; Stockley, M.; Golding, B. T.; Rigoreau, L.; Richardson, C.; Smith, G. C. M.; Griffin, R. J. J. Med. Chem. 2005, 48, 7829. (b) Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Wang, Y.; Zhao, J.; Jia, S.; Herich, J.; Labreque, D.; Storer, R.; Meerovitch, K.; Bouffard, D.; Rej, R.; Denis, R.; Blais, C.; Lamothe, S.; Attardo, G.; Gourdeau, H.; Tseng, B.; Kasibhatla, S.; Cai, S. X. J. Med. Chem. 2004, 47, 6299.
    3. (a) Albrecht, Ł.; Albrecht, A.; Krawczyk, H.; Jørgensen, K. A. Chem. Eur. J. 2010, 16, 28. (b) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 178. (c) Dondoni, A.; Massi, A. Angew. Chem. Int. Ed. 2008, 47, 4638. (d) Chem. Rev. 2007, 107, Issue 12, special issue on organocatalysis.
    4. Knüppel, S.; Rogachev, V. O.; Metz, P. Eur. J. Org. Chem. 2010, 6145.
    5. Ciganek, E. Synthesis 1995, 1311.
    6. Enders, D.; Breuer, K. Runsik, J. Helv. Chim. Acta 1996, 79, 1899.
    7. (a) Read de Alaniz, J.; Kerr, M. S.; Moore, J. L.; Rovis, T. J. Org. Chem. 2008, 73, 2033. (b) Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2005, 127, 6284. (c) Kerr, M. S.; Rovis, T. Synlett 2003, 1934. (d) Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 10298.
    8. Cullen, S. C.; Rovis, T. Org. Lett. 2008, 10, 3141.
    9. (a) Kerr, M. S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876. (b) Moore, J. L.; Kerr, M. S.; Rovis, T. Tetrahedron 2006, 62, 11477.
    10. Mennen, S. M.; Blank, J. T.; Tran-Dubé, M. B.; Imbriglio, J. E.; Miller, S. J. Chem. Commun. 2005, 195.
    11. (a) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003, 424, 146. (b) Unni, A. K.; Takenak, N.; Yamamoto, H.; Rawal, V. H. J. Am. Chem. Soc. 2005, 127, 1336.
    12. Du, H.; Zhao, D.; Ding, K. Chem. Eur. J. 2004, 10, 5964.
    13. Juhl, K.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2003, 42, 1498.
    14. Samanta, S.; Krause, J.; Mandal, T.; Zhao, C.-G. Org Lett. 2007, 9, 2745.
    15. He, M.; Uc, G. J.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 15088.
    16. Enders, D.; Grondal, C.; Hüttl, M. R. M. Angew. Chem. Int. Ed. 2007, 46, 1570.
    17. Marigo, M.; Schulte, T.; Franzén, J.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 15710.
    18. Enders, D.; Hüttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861.
    19. Ishikawa, H.; Suzuki, T.; Orita, H.; Uchimaru, T.; Hayashi, Y. Chem. Eur. J. 2010, 16, 12616.
    20. (a) He, P.; Liu, X.; Shi, J.; Lin, L.; Feng, X. Org. Lett. 2011, 13, 936. (b) Wang, X.-F.; An, J.; Zhang, X.-X.; Tan, F.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2011, 13, 808. (c) Jiang, K.; Jia, Z.-J.; Yin, X.; Wu, L.; Chen, Y.-C. Org. Lett. 2010, 12, 2766. (d) Urushima, T.; Sakamoto, D.; Ishikawa, H.; Hayashi, Y. Org. Lett. 2010, 12, 4588. (e) Reyes, E.; Talavera, G.; Vicario, J. L.; Badía, D.; Carrillo, L. Angew. Chem. Int. Ed. 2009, 48, 5701. (f) Rueping, M.; Kuenkel, A.; Tato, F.; Bats, J. W. Angew. Chem. Int. Ed. 2009, 48, 3699. (g) Hong, B.-C.; Nimje, R. Y.; Sadani, A. A.; Liao, J.-H. Org. Lett. 2008, 10, 2345. (h) Tan, B.; Chua, P. J.; Zeng, X.; Lu, M.; Zhong, G. Org. Lett. 2008, 10, 3489. (i) Enders, D.; Narine, A. A.; Benninghaus, T. R.; Raabe, G. Synlett 2007, 1667. (j) Hayashi, Y.; Okano, T.; Aratake, S.; Hazelard, D. Angew. Chem. Int. Ed. 2007, 46, 4922.
    21. Mangion, I. K.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 3696.
    22. Franke, P. T.; Richter, B.; Jørgensen, K. A. Chem. Eur. J. 2008, 14, 6317.
    23. Rueping, M.; Sugiono, E.; Merino, E. Chem. Eur. J. 2008, 14, 6329.
    24. Rueping, M.; Sugiono, E.; Merino, E. Angew. Chem. Int. Ed. 2008, 47, 3046.
    25. (a) Silveira, C. C.; Machado, A.; Braga, A. L.; Lenardão, E. J. Tetrahedron Lett. 2004, 45, 4077. (b) Taber, D. F.; Neubert, T. D.; Rheingold, A. L. J. Am. Chem. Soc. 2002, 124, 12416. (c) Tagmatarchis, N.; Thermos, K.; Katerinopoulos, H. E. J. Med. Chem. 1998, 41, 4165. (d) Ireland, R. E.; Evans, D. A.; Glover, D.; Rubottom, G. M.; Young, H. J. Org. Chem. 1969, 34, 3717.
    26. Nerinckx, W.; Vandewalle, M. Tetrahedron: Asymmetry 1990, 1, 265.
    27. (a) Huang, P.-J. J.; Potter, E.; Jha, A. Mol. Diversity 2010, 14, 393. (b) Jha, A.; Zhao, J.; Cameron, T. S.; Clercq, E. D.; Balzarini, J.; Manavathu, E. K.; Stables, J. P. Lett. Drug Des. Discovery 2006, 3, 304.
    28. Covarrubias-Zúñiga, A.; Cantú, F.; Maldonado, L. A. J. Org. Chem. 1998, 63, 2918.
    29. (a) Bondarev, O.; Bruneau, C. Tetrahedron: Asymmetry 2010, 21, 1350. (b) Renaud, J. L.; Dupau, P.; Hay, A.-E.; Guingouain, M.; Dixneuf, P. H.; Bruneau, C. Adv. Synth. Catal. 2003, 345, 230. (c) Parker, M. H.; Chen, R.; Conway, K. A.; Lee, D. H. S.; Luo, C.; Boyd, R. E.; Nortey, S. O.; Ross, T. M.; Scott, M. K.; Reitz, A. B. Bioorg. Med. Chem. 2002, 10, 3565. (d) Foulon, C.; Kung, M.-P.; Kung, H. F. J. Med. Chem. 1993, 36, 1499.
    30. (a) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2005, 44, 794. (b) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212. (c) Marigo, M.; Franzén, J.; Poulsen, T. B.; Zhuang, W.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 6964.
    31. (a) Chang, C.; Li, S.-H.; Reddy, R. J.; Chen, K. Adv. Synth. Catal. 2009, 351, 1273. (b) Ting, Y.-F.; Chang, C.; Reddy, R. J.; Magar, D. R.; Chen, K. Chem. Eur. J. 2010, 16, 7030. (c) Liu, P.-M.; Magar, D. R.; Chen, K. Eur. J. Org. Chem. 2010, 5705. (d) Anwar, S.; Lee, P.-H.; Chou, T.-Y.; Chang, C.; Chen, K. Tetrahedron 2011, 67, 1171.
    32. Flack, H. D. Acta Crystallogr. Sect. A 1983, 39, 876.
    第三章 (±)-Viroallosecurinine的全合成
    1. Snieckus, V. The Securinega Alkaloids in The Alkaloids; Manske, R. H. F. Ed.; 1975, Vol. 14, pp 425-506.
    2. (a) Ohsaki, A.; Kobayashi, Y.; Yoneda, K.; Kishida, A.; Ishiyama, H. J. Nat. Prod. 2007, 70, 2003. (b) Imado, S.; Shiro, M.; Horii, Z. Chem. Pharm. Bull. 1965, 13, 643.
    3. Nakano, T.; Yang, T. H.; Terao, S. Chem. Ind. 1962, 1651.
    4. Saito, S.; Iwamoto, T.; Tanaka, T.; Matsumura, C.; Sugimoto, N.; Horii, Z.; Tamura, Y. Chem. Ind. 1964, 1263.
    5. (a) Rognan, D.; Boulanger, T.; Hoffmann, R.; Vercauteren, D. P.; Andre, J.-M.; Durant, F.; Wermuth, C.-G. J. Med. Chem. 1992, 35, 1969. (b) Tatematsu, H.; Mori, M.; Yang, T.-H.; Chang, J.-J.; Lee, T. T.-Y.; Lee, K.-H. J. Pharm. Sci. 1991, 80, 325. (c) Horii, Z.; Imanishi, T.; Yamauchi, M.; Hanaoka, M.; Parello, J. Munavalli, S. Tetrahedron Lett. 1972, 13, 1877.
    6. Weinreb, S. M. Nat. Prod. Rep. 2009, 26, 758.
    7. Honda, T.; Namiki, H.; Watanabe, N.; Mizutani, H. Tetrahedron Lett. 2004, 45, 5211.
    8. Bardají, G. G.; Cantó, M.; Alibés, R.; Bayón, P.; Busqué, F.; de March, P.; Figueredo, M.; Font, J. J. Org. Chem. 2008, 73, 7657.
    9. (a) Wood, J. L.; Stoltz, B. M.; Dietrich, H.-J.; Pflum, D. A.; Petsch, D. T. J. Am. Chem. Soc. 1997, 119, 9641. (b) Wood, J. L; Moniz, G. A.; Pflum, D. A.; Stoltz, B. M.; Holubec, A. A.; Dietrich, H.-J. J. Am. Chem. Soc. 1999, 121, 1748. (c) Wood, J. L.; Moniz, G. A. Org. Lett. 1999, 1, 371
    10. Medeiros, M. R.; Wood, J. L. Tetrahedron 2010, 66, 4701.
    11. Roche, C.; Desroy, N.; Haddad, M.; Phansavath, P.; Genet, J.-P. Org. Lett. 2008, 10, 3911.
    12. Davies, H. M. L.; Cantrell, W. R.; Romines, Jr. K. R.; Baum, J. S. Org. Synth. 1992, 70, 93; Org. Synth. 1998, Coll. Vol. 9, 422.
    13. (a) Moody, C. J.; Taylor, R. J. J. Chem. Soc. Perkin Trans. 1 1989, 721. (b) Moody, C. J.; Taylor, R. J. Tetrahedron Lett. 1987, 28, 5351.
    14. Nowrouzi, F.; Janetzko, J.; Batey, R. A. Org. Lett. 2010, 12, 5490.
    15. (a) Lipshutz, B. H.; Lee, C.-T.; Servesko, J. M. Org. Lett. 2007, 9, 4713. (b) Reiter, M.; Ropp, S.; Gouverneur, V. Org. Lett. 2004, 6, 91.
    16. (a) Yu, L.-F.; Hu, H.-N.; Nan, F.-J. J. Org. Chem. 2011, 76, 1448. (b) Lerm, M.; Gais, H.-J.; Cheng, K.; Vermeeren, C. J. Am. Chem. Soc. 2003, 125, 9653.
    17. (a) Silva, F.; Reiter, M.; Mills-Webb, R.; Sawicki, M.; Klär, D.; Bensel, N.; Wagner, A.; Gouverneur, V. J. Org. Chem. 2006, 71, 8390. (b) Reiter, M.; Turner, H.; Mills-Webb, R.; Gouverneur, V. J. Org. Chem. 2005, 70, 8478.
    18. Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchesini, G.; Dolling, U.-H.; Grabowski, E. J. J. Tetrahedron Lett. 1995, 36, 5461.
    19. Lindsay, K. B.; Pyne, S. G. J. Org. Chem. 2002, 67, 7774.
    20. (a) Chae, M. J.; Song, J. I.; An, D. K. Bull. Korean Chem. Soc. 2007, 28, 2517. (b) Song, J. I.; An, D. K. Chem. Lett. 2007, 36, 886. (c) Kovacs, G.; Galambos, G.; Juvancz, Z. Synthesis 1977, 171.
    21. Hong, S. H.; Sanders, D. P.; Lee, C. W.; Grubbs, R. H. J. Am. Chem. Soc. 2005, 127, 17160.
    22. Leduc, A. B.; Kerr, M. A. Angew. Chem. Int. Ed. 2008, 47, 7945.

    下載圖示
    QR CODE