簡易檢索 / 詳目顯示

研究生: 鍾懿威
Yi-Wei Chung
論文名稱: V頻帶功率放大器與I/Q調變器設計
Design of V-band Power Amplifier and I/Q Modulator
指導教授: 蔡政翰
Tsai, Jen-Han
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 132
中文關鍵詞: 功率放大器I/Q調變器V頻帶CMOS改良式Gilbert-cell混頻器
英文關鍵詞: Power Amplifier, I/Q Modulator,, V-band, CMOS, Modified Gilbert-cell Mixer
論文種類: 學術論文
相關次數: 點閱:650下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製之方向為一毫米波發射機系統的子電路分析─功率放大器(Power Amplifier, PA)與I/Q調變器(I/Q Modulator),電路操作於V頻帶,使用的製程為台積電所提供的TSMC CMOS 90nm RF 1P9M標準製程。
    隨著無線通訊技術的迅速發展,射頻積體電路逐漸朝著更高的頻率、資料傳輸速率、寬頻且高整合性的方向前進;無須執照的V頻段具備有達成超高速率傳輸的可行性,係一個利於本次設計研發的頻段。而CMOS製程技術具有小面積、低成本、低功耗、與高整合度等優勢,係一在毫波米頻段極具吸引力的製程技術。
    於各電路的模擬設計上採用了安捷倫所提供之ADS(Advanced design system)與電磁模擬軟體SONNET,而設計的電路為功率放大器(Power Amplifier, PA)與I/Q調變器(I/Q Modulator)兩個發射機系統的前端電路,其中功率放大器(Power Amplifier, PA)於設計上採用1:2:4的三級共源極(common source, CS)設計架構,其中第一級與第二級設定為驅動級(Drive Stage),第三級為功率輸出級(Power Stage),並在第三級加入一線性器,讓功率輸出有約略6 dBm左右的線性延長現象,於60 GHz的最大輸出功率為9.72 dBm,包含測試pad的晶片面積為0.711 × 0.657 mm2。
    I/Q調變器(I/Q Modulator)於設計上,由最基本的混頻原理作為切入,完成一改良式Gilbert-cell混頻器(Modified Gilbert-cell Mixer),並有效結合數學模型加以驗證一I/Q調變器(I/Q Modulator)的電路架構與模型,包含測試pad的晶片面積為0.6978×0.8126 mm2。

    The purpose of this dissertation is to develop a Power Amplifier and an I/Q Modulator in a V-band millimeter-wave transmitter system. They are fabricated on TSMC 90 nm 1P9M RF CMOS process.
    With the development of wireless communication technologies, radio frequency integrated circuit tends to higher frequency, higher data rate, wider bandwidth, and higher integration. For this subject, unlicensed multi-GHz bandwidth around V-band makes very high data rate transmission feasible. We adopt CMOS technology. It has the advantages of small size, low cost, low power consumption, and high level of integration, all of which are for MMW applications.
    To develop a Power Amplifier and an I/Q Modulator in a V-band millimeter-wave transmitter system. We are using Agilent ADS software and SONNET software to be the simulation tools. The first circuit is Power Amplifier, which utilizes three-stage common source configuration amplifier. The first and second stages are drive stages. The third stage is power stage. To purpose higher linearity, we combine a Pre-distortion Linearizer on the power stage. The circuit will have better linearity than without Linearizer.
    The second circuit is I/Q Modulator, which is using two Modified Gilbert-cell Mixer, one Coupler, and one Wilkinson Combiner.

    摘 要 I ABSTRACT III 誌 謝 V 目 錄 VIII 圖 目 錄 X 表 目 錄 XIII 第一章 緒論 1 1.1 V頻帶研究背景與動機 1 1.2 論文簡介 2 1.3 論文架構 3 第二章 V band 功率放大器與IQ調變器設計與簡介 4 2.1 V band 收發機系統簡介 4 2.2 線性度考量(Linearity Consideration)[6] 6 2.2.1 非記憶線性時變系統 6 2.2.2 非線性失真(Nonlinear Distortion Characterization) 7 2.2.3 諧波(Harmonic) 8 2.2.4 振幅調變特性(AM-AM Characterization) 8 2.2.5 相位調變特性(AM-PM Characterization) 9 2.2.6 交互調變(Intermodulation, IM) 10 2.2.7 三階互調截點(Third-Order Intercept point, IP3) 11 2.2.8 鄰近通道功率比例(Adjacent Channel Power Ratio, ACPR) 13 2.2.9 誤差向量幅度 (Error Vector Magnitude, EVM) 14 2.3 功率放大器設計參數簡介 15 2.3.1 增益(Gain) 15 2.3.2 功率(Power) 15 2.3.3 效率(Efficiency) 16 2.4 I/Q調變器設計參數簡介[45][46][47] 16 2.4.1 轉換增益(Conversion Gain, CG) 16 2.4.2 鏡像拒斥比(Image Rejection Ratio) 17 2.4.3 埠對埠訊號隔離度(Port to Port Isolation) 17 第三章 V band功率放大器 18 3.1 功率放大器簡介 18 3.2 線性化技術(Linearization Techniques) 20 3.3 內建線性器功率放大器設計與分析 25 3.3.1 設計流程(Design Flow) 25 3.3.2 偏壓與元件選擇(Bias and Device Size Selection) 27 3.3.3 功率放大級選擇 39 3.3.4 匹配網路設計 43 3.3.5 線性功率放大器 46 3.3.6 穩定度分析 48 3.4 模擬結果 49 3.5 模擬與量測結果 52 3.6 結果與討論 56 第四章 V band I/Q調變器 64 4.1 訊號調變技術簡介[44] 64 4.1.1 收發系統 64 4.1.2 超外差式接收機(Super Heterodyne Receiver) 65 4.1.3 直接降頻式接收機(Homodyne Receiver) 66 4.1.4 直接升頻式發射機(Direct-Conversion Transmitter) 67 4.1.5 外差式發射機(Heterodyne Transmitter) 68 4.2 I/Q調變器設計概念與流程 69 4.2.1 I/Q調變器設計概念與參數考量 69 4.2.2 I/Q調變器設計流程 71 4.3 改良式吉伯特混頻器設計 73 4.3.1 混頻原理分析 73 4.3.2 LO切換對(LO Switching Pair)設計 75 4.3.3 IF端電路分析 85 4.3.4 IF緩衝反向放大器設計 86 4.3.5 改良式吉伯特混頻器 (Modified Gilbert-Cell Mixer) 92 4.4 I/Q調變器設計(Design of I/Q Modulator) 102 4.4.1 I/Q調變器設計與模擬分析 102 4.4.2 耦合器(Coupler) 106 4.4.3 威爾金森合成器(equal split Wilkinson power combiner) 116 4.5 模擬結果 118 4.6 未來工作 122 4.7 結果與討論 124 第五章 結論 125 參 考 文 獻 126 自 傳 132 學 術 成 就 132

    ●Chapter 2
    [1] Kai Chang, RF and Microwave Wireless System, John Wiley & Sons, Inc., 2000.
    [2] Guillermo Gonzalez, Microwave Transistor Amplifier-Analysis and Design, 2nd Ed., Prentice Hall, Inc., 1984.
    [3] David M. Pozar, Microwave Engineering, 3rd Ed, John Wiley & Sons, Inc., 2005.
    [4] Behzad Razavi, RF Microelectronics, 2nd Ed., Prentice Hall PTR, 2012.
    [5] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Series in Electrical and Computer Engineering , 2001
    [6] Jeng-Han Tsai, “Millimeter-wave Transmitter Linearization and Gigabit Wireless Communication Systems,” Graduate Institute of Communication Engineering College of Electrical Engineering & Computer Science National Taiwan University Doctoral Dissertation, January, 2007.
    [7] 林益璋,V 頻帶CMOS低雜訊放大器設計與分析,國立臺灣師範大學應用電子科技所碩士論文,民國100年9月
    [8] 林繼揚,應用於 77 GHz 汽車防撞雷達系統之毫米波積體電路設計,國立臺灣師範大學應用電子科技所碩士論文,民國101年7月
    [9] 張瑞廷,CMOS/MEMS射頻功率放大器與四次斜坡混頻器之研製,國立成功大學電機工程學系微電子工程研究所碩士論文,民國98年7月
    ●Chapter 3
    [10] Jeng-Han Tsai, Hong-Yeh Chang, Pei-Si Wu,Yi-Lin Lee, Tian-Wei Huang, and Huei Wang, “Design and Analysis of a 44-GHz MMIC Low-Loss Built-In Linearizer for High-Linearity Medium Power Amplifiers,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 6, JUNE 2006.
    [11] Jing-Lin Kuo, Zuo-Min Tsai, Kun-You Lin, and Huei Wang, “ A 50 to 70 GHz Power Amplifier Using 90 nm CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 19, pp. 45-47, 2009.
    [12] Yung-Nien Jen, Jeng-Han Tsai, Tian-Wei Huang, and Huei Wang, “ A V-band Fully-Integrated CMOS Distributed Active Transformer Power Amplifier for 802.15.TG3c Wireless Personal Area Network Applications,” IEEE Compound Semiconductor IC Symposium, Aug. 2008, Invited paper.
    [13] Ullrich R. Pfeiffer, and David Goren, “ A 23-dBm 60-GHz Distributed Active Transformer in a Silicon Process Technology, ” IEEE Trans. on Microwave Theory and Techniques, VOL. 55, NO. 5, MAY 2007, pp. 857-865.
    [14] Kuba Raczkowski, Steven Thijs, Walter De Raedt, Bart Nauwelaers, and Piet Wambacq, “ 50-to-67GHz ESD-Protected Power Amplifiers in Digital 45nm LP CMOS, ” IEEE Int. Solid-State Circuits Conference Dig. Tech. Papers., Feb. 2009, pp. 382-383.
    [15] Wei L. Chan, John R. Long, Marco Spirito, and John J. Pekarik, “ A 60GHz-Band 1V 11.5dBm Power Amplifier with 11% PAE in 65nm CMOS, ” IEEE Int. Solid-State Circuits Conference Dig. Tech. Papers., Feb. 2009, pp. 380-381.
    [16] Tim LaRocca, and Mau-Chung Frank Chang, “ 60GHz CMOS Differential and Transformer-Coupled Power Amplifier for Compact Design,” IEEE Radio Frequency Integrated Circuits Symposium, June 2008.
    [17] Sofiane Aloui, Eric Kerherve, Robert Plana, and Didier Belot, “RF-pad, transmission lines and balun optimization for 60GHz 65nm CMOS power amplifier,” IEEE Radio Frequency Integrated Circuits Symp., pp. 211 - 214, Jun. 2010.
    [18] Baudouin Martineau, Vincent Knopik, Alexandre Siligaris, Frederic Gianesello, Didier Belot1, “A 53-to-68GHz 18dBm power amplifier with an 8-Way combiner in standard 65nm CMOS,” ISSCC Dig. Tech. Papers, pp. 428 - 429, Feb. 2010.
    [19] C. Wang, M. Vaidyanathan, and L. E. Larson, “A capacitance compensation technique for improved linearity in CMOS class-AB power amplifiers,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1927 - 1937, Nov. 2004.
    [20] Naoyuki Kurita and Hiroshi Kondoh Central Research Laboratory, Hitachi Ltd., Kokubunji, “60GHz and 80GHz wide band power amplifier MMICs in 90nm CMOS technology, ” IEEE Radio Frequency Integrated Circuits Symp., pp. 39 - 42, Jun. 2009.
    [21] Wei L. Chan, John R. Long, Marco Spirito, John J. Pekarik, “A 60GHz-band 1V 11.5dBm power amplifier with 11% PAE in 65nm CMOS,” ISSCC Dig. Tech. Papers, pp. 380 - 381, Feb. 2009.
    [22] Kuba Raczkowski, Steven Thijs, Walter De Raedt, Bart Nauwelaers,Piet Wambacq1, “50-to-67GHz ESD-Protected Power Amplifiers in Digital 45nm LP CMOS,” ISSCC Dig. Tech. Papers, pp. 382 - 383, Feb. 2009.
    [23] Jenny Yi-Chun Liu, Adrian Tang, Ning-Yi Wang, Qun Jane Gu, Roc Berenguer, Hsieh-Hung Hsieh, Po-Yi Wu, Chewnpu Jou and Mau-Chung Frank Chang “A V-band Self-Healing Power Amplifier with Adaptive Feedback Bias Control in 65 nm CMOS, ” IEEE RFIC Symp., 2011, June 2011.
    [24] Toshihide Suzuki, Yoichi Kawano, Masaru Sato, Tatsuya Hirose, Kazukiyo Joshin, “60 and 77GHz power amplifier in standard 90nm CMOS,” ISSCC Dig. Tech. Papers, pp.562-563, Feb. 2008.
    [25] 魏吉鴻,微波積體化功率放大器設計及研製,國立中央大學電機工程研究所術士論文,民國91年6月
    ●Chapter 4
    [26] Hong-Yeh Chang, Shou-Hsien Weng, and Chau-Ching Chiong, “A 30–50 GHz wide modulation bandwidth bidirectional BPSK demodulator modulator with low LO power,” IEEE Microw. Wireless Compon. Lett., vol. 19,no.5, pp. 332–334, May 2009
    [27] Hong-Yeh Chang, Pei-Si Wu, Tian-Wei Huang, Huei Wang, Chung-Long Chang, and John G. J. Chern, “Design and analysis of CMOS broadband compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no.1, pp.20 - 30, Jan. 2006.
    [28] A. P. Freundorfer, K. Hamed, Y. Sun, Y. Antar, P. Frank, and D. Sawatzky, “A direct digital 2 Gb/s modulator/demodulator experiment in GaAs HBT at 30 GHz,” in Proc. Asia-Pacific Microw. Conf., Dec. 2006, pp. 1611 - 1614.
    [29] Jeng-Han Tsai, and Tian-Wei Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Microw. Theory Tech., vol. 55, no. 10, pp. 2075 - 2085, Oct. 2007.
    [30] Eric Juntunen, Matthew Chung-Hin Leung, Francesco Barale, Arun Rachamadugu, David A. Yeh, Bevin George Perumana, Padmanava Sen, Debasis Dawn, Saikat Sarkar, Stephane Pinel, and Joy Laskar, “A 60GHz 38-pJ/bit 3.5-Gb/s 90nm CMOS OOK Digital Radio,” IEEE Trans. Microw. Theory Tech., Vol. 58, No. 2, pp. 348-355, Feb. 2010.
    [31] Fujiang Lin, James Brinkhoff, Kai Kang, Duy Dong Pham, and Xiaojun Yuan, “A low power 60GHz OOK transceiver system in 90nm CMOS with innovative on-chip AMC antenna,” IEEE ASSC Conf., pp. 349-352, Nov. 2009.
    [32] Ahmet ONCU, Kyoya TAKANOÁ, and Minoru FUJISHIMA, “8Gbps CMOS ASK modulator for 60GHz wireless communication,” IEEE ASSC Conf., pp.125-128, Nov. 2008.
    [33] Hong-Yeh Chang, Ming-Fong Le, Chin-Shen Lin, Yi-Hsien Cho, Zuo-Min Tsai, and Huei Wang, “A 46GHz direct wide modulation bandwidth ASK modulator in 0.13um CMOS technology,” IEEE Microw. Wireless Compon. Lett., Vol.17, No.9, pp.691-693, Sept. 2007.
    [34] Sanghoon Kang, Byounggi Choi, and Bumman Kim, “Linearity Analysis of CMOS for RF Application,” IEEE Trans. on Microw. Theory Tech., vol.51, pp.972-977, no.3, Mar. 2003.
    [35] Jri Lee, Yenlin Huang, Yentso Chen, Hsinchia Lu, and Chiajung Chang, “A Low-Power Fully Integrated 60GHz Transceiver System with OOK Modulation and On-Board Antenna Assembly,” IEEE International Solid-State Circuits Conference, 2009.
    [36] David J. Allstot, Xiaoyong Li, and Sudip Shekhar, “Design considerations for CMOS low-noise amplifiers,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., pp. 97–100, Jun.2004.
    [37] Ahmet Oncu, and Minoru Fujisima, “19.2mW 2Gbps CMOS Pulse Radio for 60GHz Band Wireless Communication,” IEEE Symposium on VLSI circuits Digest, pp.158-159, 2008.
    [38] Eric Juntunen, Matthew Chung-Hin Leung, Francesco Barale, Arun Rachamadugu, David A. Yeh, Bevin George Perumana, Padmanava Sen, Debasis Dawn, Saikat Sarkar, Stephane Pinel, and Joy Laskar, “A 60-GHz 38-pJ/bit 3.5-Gb/s 90nm CMOS OOK Digital Radio,” IEEE Trans. on Microw. Theory Tech., vol.58, pp.348-355, no.2, Feb. 2010
    [39] Jeng-Han Tsai, “Design of 40-108-GHz Low Power and High-Speed CMOS Up/Down-Conversion Ring Mixer for Multistandard MMW Radio Applications” IEEE Transactions on Microware Theory and techniques, Vol.60, No.3, March 2012
    [40] Jeng-Han Tsai, Hong-Yuan Yang, Tian-Wei Huang, and Huei Wang, Fellow, “A 30–100 GHzwideband sub-harmonic active mixer in 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 554–556,Aug. 2008.
    [41] Fan Zhang, Efstratios Skafidas, William Shieh, “A 60-GHz double-balanced Gilbert cell down-conversion mixer on 130-nm CMOS,” in IEEE RFIC Symp. Dig., pp. 141–144, Jun. 2007.
    [42] Jeng-Han Tsai, “Design of 1.2 V broadband, high data-rate MMW CMOSI/Q modulator and demodulator using modified Gilbert-cell mixer,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1350–1360, May 2011.
    [43] Tomoaki Maekawa, Shuhei Amakawa, Noboru Ishihara, and Kazuya Masu, “Design of CMOS inverter-based output buffers adapting the Cherry-Hooper broadbanding technique,” Circuit Theory and Design, 2009. ECCTD 2009. European Conference on. IEEE, 2009.
    [44] 白禮智,覆晶式 Ka 頻段超外差發射機前端電路之研製,國立中央大學通訊工程研究所碩士論文,民國94年7月
    [45] 陳冠宇,應用於微波存取全球互通之發射機研製,國立中央大學電機工程研究所術士論文,民國95年6月
    [46] 沈哲豪,寬頻低功耗金氧半場效電晶體射頻環狀電阻性混頻器,國立中央大學電機工程研究所術士論文,民國98年6月
    [47] 黃俊穎,應用於 WiMAX 與第四代行動通訊之CMOS直接升降頻器及數位調控增益放大器設計,國立中正大學電機工程研究所碩士論文,民國97年7月
    [48] 張育銓,深次微米互補式金氧半製程之低功耗接收器前端電路設計,淡江大學電機工程學系碩士班 積體電路與計算機組,民國101年6月

    下載圖示
    QR CODE