研究生: |
何莉芳 Li-Fang Ho |
---|---|
論文名稱: |
含硒或碲之鉻金屬羰基化合物的系統研究 Synthesis and Characterization of Group 6 (M= Cr, Mo) Carbonyl Chalcogenides Complexes |
指導教授: |
謝明惠
Shieh, Ming-Huey |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 270 |
中文關鍵詞: | 團簇化合物 、羰基 |
英文關鍵詞: | cluster, carbonyl |
論文種類: | 學術論文 |
相關次數: | 點閱:141 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] 硒(Se)-鉻(Cr)系統的研究
使用Se金屬粉末或是其氧化物(Na2SeO3、SeO2),與Cr(CO)6、Et4NBr,以1:2的比例在鹼性甲醇溶液中,加熱反應可得雙三角錐結構的[Et4N]2[Se2Cr3(CO)10]。利用相同條件,[S2Cr3(CO)10]2-亦可成功地被合成出。
將[Se2Cr3(CO)10]2-與MeOTf反應,可得單甲基及雙甲基化合物[MeSeCr3(CO)15]-、{MeSeCr(CO)4}2,並探討兩化合物之間的關係。然而,與其他有機試劑RX (R = C3H3, X = Cl, Br; R = CH3, X = I) 反應,則僅得穩定的單核產物[XCr(CO)5]-(X = Cl、Br、I)。
此外,與第八族的異核金屬Fe(CO)5、Ru3(CO)12反應,分別得已知產物[SeFe3(CO)9]2-與具八面體結構的[HSe2Ru4(m-CO)2(CO)8]-、[Se2Ru4(m-CO)4(CO)8]2-。而將[Se2Cr3(CO)10]2-與1當量的Mo(CO)6在丙酮中反應,可得混合鉻鉬金屬的化合物 [Se2MoCr2(CO)10]2-;若以過量的Mo(CO)6反應,則得高產率完全取代的[Se2Mo3(CO)10]2- 。
至於[Se2Cr3(CO)10]2-與 Mn(CO)5Br的反應在丙酮中反應,可得兩種不同形式且結構特殊的混合鉻-錳金屬化合物,分別是 [Me2CSe2Cr2Mn(CO)14]-與[ Se2Cr2Mn3(CO)20]-。
[2] 碲(Te)-鉻(Cr)系統的研究
將Te與Cr(CO)6、KOH以1:2的比例在甲醇溶液中反應,先形成[HTe{Cr(CO)5}2]-,但目前並無證據顯示其存在,再加入Et4NBr則可得綠色不安定化合物[Te{Cr(CO)5}2]2-。然而當我們改用鹼度較小的NaOH,依相同條件則得單甲基化合物[MeTe{Cr(CO)5}2]-,推測甲基是來自所使用的溶劑MeOH。若以[Te{Cr(CO)5}2]2-與MeOTf反應,僅生成雙甲基化合物Me2Te{Cr(CO)5}2。
此外,[Te{Cr(CO)5}2]2-對O2、CH2Cl2極為敏感,會迅速反應生成雙聚合的[L{TeCr2(CO)10}2]2- (L = O, CH2)。 [Te{Cr(CO)5}2]2-再進一步與Cu(CH3CN)4BF4反應,可得已知平面型化合物[Te2Cr4(CO)20]2-。若改與NaOH/MeOH反應,則生成另一已知開放性結構的化合物[Te2Cr4(CO)18]2-。
至於,提高Cr(CO)6的比例至1:3,所得產物亦很容易與CH2Cl2反應,而生成[CH2ClTe{Cr(CO)5}3]-。
[3] 碲(Te)-鉬(Mo)系統的研究
使用Te powder 與 Mo(CO)6 在鹼性甲醇溶液中反應,可得車輪狀化合物 [Te8Mo6(CO)18]2-,此化合物包含三個Te2Mo2平面並以Te22-相連結 ,故亦可由[Te2Mo4(CO)18]2-與Te/KOH反應而得 。若將[Te2Mo4(CO)18]2- 與溴丙烯 H2C=CHCH2Br反應,丙烯基取代起始物中的Mo(CO)5,而生成雙取代化合物[(C3H5)2Te2Mo2(CO)6] 。
[1] Se-Cr system
Reflux of Se powder or SeO2、SeO32- with Cr(CO)6、Et4NBr in KOH/MeOH solution yields the closo-cluster [Et4N]2[Se2Cr3(CO)10]. [S2Cr3(CO)10]2- also an be prepared in the similar conditions. Further methylation of [Se2Cr3(CO)10]2- with MeSO3CF3 produces the selenium-methylated complex [MeSe{Cr(CO)5}3]- and {MeSeCr(CO)4}2 . However, the reactions of [Se2Cr3(CO)10]2- with RX (R = C3H3, X = Cl, Br; R = CH3, X = I) form the known mononuclear compounds [XCr(CO)5]- (X = Cl, Br, I)
Further, reaction of [Se2Cr3(CO)10]2- with Fe(CO)5/KOH gives [SeFe3(CO)9]2-, while treatment with Ru3(CO)12 produces the octahedral complexes [HSe2Ru4(m-CO)2(CO)8]- and [Se2Ru4(m-CO)4(CO)8]2-. Be- sides, [Se2Cr3(CO)10]2- can react with 1 equiv. of Mo(CO)6 in acetone to produce the mixed-metal Cr/Mo cluster [Se2MoCr2(CO)10]2-. On the other hand, reaction of [Se2Cr3(CO)10]2- with excess Mo(CO)6 leads to formation of [Se2Mo3(CO)10]2- in good yield. When [Se2Cr3(CO)10]2- was treated with Mn(CO)5Br in acetone at room temperature, two different types of the unusual mixed-metal clusters [Me2CSe2Cr2Mn(CO)14]- and [Se2Cr2Mn3- (CO)20]- were produced.
[2] Te-Cr system
The reaction of Te powder with Cr(CO)6/KOH in a molar ratio of 1:2 in methanol solution forms [HTe{Cr(CO)5}2]- , which can rapidly transform into a highly reactive species [Et4N]2[Te{Cr(CO)5}2] by the addition of Et4NBr . However, the mono-methylated complex [MeTe{Cr(CO)5}2]- can be obtained by using NaOH under the similar conditions, where the methyl group is likely to come from the methanol solvent.
The reaction of [Te{Cr(CO)5}2]2- with MeSO3CF3 only affords the double-methylated complex Me2Te{Cr(CO)5}2 . [Te{Cr(CO)5}2]2- rapidly transforms to give [X{TeCr2(CO)10}2]2- (X = O, CH2) upon the attack of O2 and CH2Cl2. Besides, the reaction of [Te{Cr(CO)5}2]2- with Cu(CH3CN)4BF4 produces the known compound [Te2Cr4(CO)20]2- while treatment of [Te{Cr(CO)5}2]2- with NaOH/MeOH gives another known compound [Te2Cr4(CO)18]2-.
When Te powder reacts with Cr(CO)6/KOH in a molar ratio of 1: 3 in methanol solution, the product is found to rapidly transform into a new complex [CH2ClTe{Cr(CO)5}3]- upon the addition of CH2Cl2.
[3] Te-Mo system
Reflux of Te powder and Mo(CO)6 in KOH/MeOH solution forms the tire-shaped cluster [Te8Mo6(CO)18]2-, which contains three Te2Mo2 planes linking by Te22- group. This product can be also obtained from the reaction of Te powder with [Te2Mo4(CO)18]2- in the basic alcoholic solution. When [Te2Mo4(CO)18]2- was treated with H2C=CHCH2Br, the double-substituted complex [(C3H5)2Te2Mo2(CO)6] was obtained where the Mo(CO)5 moiety of [Te2Mo4(CO)18]2- is replaced by the incoming C3H5 group.
The study herein describes the similarities and differences among the reactions of group 6 (Cr, Mo) carbonyls with group 16 chalcogen atoms (S, Se, Te) and discusses as well the effect of basicity and metal size on cluster formation.
1. (a) Somorjai, G. A. Chemistry in Two Dimension; Cornell University Press : New York, 1981. (b) Lin, Y. C.; Lu, K. h. Chemistry 1991, 49, 303. (c) Douglas, B.; Mcdaniel, D.; Alexander, J. Concepts and Models of Inorganic Chemistry 3rd Wiley, 1994.
2. (a) Diéguez, M.; Claver, C.; Masdeu-Bultó, A. M.; Ruiz, A. Organome-tallics 1999, 18, 2107. (b) Räsänen, T. M.; Jäskeläinen, S.; Pakkanen, T. A.; J. Organoment. Chem. 1997, 548, 263. (c) Limberg, C.; Hunger, M.; Kircher, P. Angew. Chem., Int. Ed. Engl. 1999, 38, 1105. (d) Suss-Fink, G.; Haak, S.; Ferrand, V.; Stoeckli-Evans, H. J. Chem. Soc., Dalton Trans. 1997, 3861.
3. Haak, S.; Neels, A.; Stoeckli-Evans, H.; Suss-Fink, G.; Thomas, C. M. Chem. Commun. 1999, 1959.
4. Wilknson, G.; Stone, F. G. A.; Abel, E. W. Comprehensive Organme-tallic Chemistry, Pergamon, Oxford, 1982.
5. Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1.
6. (a) Chini, P.; Longoni, G.; Albane, V. G. Adv. Organomet. Chem. 1976, 14, 285. (b) King, R. B. Prog, Inorg. Chem. 1972, 15, 287.
7. Huang, S. P.; Kanatzidies, M. G. J. Am. Chem. Soc. 1992, 114, 5477.
8. (a) Sinfelt, J. H. Acc. Chem. Res. 1977, 10, 15. (b) Muetterties, E. L. Bull. Soc. Chim. Belg. 1975, 84, 959.
9. Inagaki, A.; Takemori, T.; Tanaka, M.; Suzuki, H. Angew. Chem., Int. Ed. Engl. 2000, 39, 404.
10. (a) Nicholls, J. N.; Polyhedron 1984, 3, 1307. (b) Whitimire, K. H.; Lagrone, C. B.; Rheingold, A. L. Inorg. Chem. 1986, 25, 2472.
11. Inagaki, A.; Takemori, T.; Tanaka, M.; Suzuki, H. J. Am. Chem. Soc. 1999, 121, 7421.
12. Schmid, G. Angew. Chem., Int. Ed. Engl. 1978, 17, 392.
13. (a) Johnson, B. F. G.; Layer, T. M.; Lewis, J.; Martin, A.; Raithby, P. R. J. Organomet, Chem. 1992, 429, C41. (b) Mathur, P.; Hossain, M. M.; Rashud, R. S. J. Organomet, Chem. 1993, 448, 211.
14. Shieh, M.; Tang, T.-F.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 1995, 34, 2797.
15. Hieber, W.; Gruber, J. Z. Anorg. Allg. Chem. 1958, 296, 91.
16. Gladysz, J. A.; Wong, V. K.; Jick, B. S. Chem. Commun. 1978, 838.
17. (a) Roof, L. C.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1992, 31, 2056. (b) Flomer, W. A.; O’Neal, S. C.; Kolis, J. W.; Jeter, D.; Cordes, A. W. Inorg. Chem. 1988, 27, 969.
18. Das, B. K.; Kanatzidis, M. G. Inorg. Chem. 1995, 34, 5721.
19. Shieh, M.; Liou, Y.; Jeng, B.-W. Organometallics 1993, 12, 4926 .
20. Shieh, M.; Liou, Y.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 1993, 32, 2212.
21. 陳鴻生,國立台灣師範大學碩士論文,1997.
22. Shieh, M.; Ho, L.-F.; Cherng, J.-J.; Ueng, C.-H.; Peng, S.-M.; Lee, G.-H J. Organomet, Chem. 1999, 587, 176.
23. Shieh, M.; Shieh, M.-H.; Tsai, Y.-C; Ueng, C.-H. Inorg. Chem. 1995, 34, 5088.
24. Shieh, M.; Tsai, Y.-K. Inorg. Chem. 1994, 33, 2303.
25. 詹莉芬,國立台灣師範大學碩士論文,1997.
26. Shieh, M. J. Cluster Science 1999, 10, 3.
27. (a) Roof, L. C.; Kolis, J. W. Chem Rev. 1993, 93, 1037. (b) Muthur, P. Adv. Organomet. Chem. 1997, 41, 242. (c) Kanatzidas, M. G.; Huang, S. -P.; Coord. Chem. Rec. 1994, 130, 509.
28. (a) Ruff, J. K.;King, R. B. Inorg. Chem. 1969, 8, 180. (b) Gingerich, R. W.; Angelici, R. J. J. Organomet. Chem. 1977, 132, 377. (c) Suss, G.; Herberhold, M. Angew. Chem. Int. Ed. Engl. 1976, 15, 366. (d) Karcher, B. A.; Jacobson, R. A. J. Organomet. Chem. 1977, 132, 387 (e) Barnett, G. H.; Copper, M. K. J. Chem. Soc., Dalton Trans. 1978, 587.
29. Cooper, M. K.; Duckworth, P. A. J. Chem. Soc., Dalton Trans. 1981, 2357
30. Hoefler, M.; Tebbe, K.-F.; Veit, H.; Weiler, N. E. J. Am. Chem. Soc. 1983, 105, 6338.
31. (a) Darensbourg, D. J.; Zalewski, D. J. Organometallics 1984, 3, 1598. (b) Darensbourg, D. J.; Zalewski, D. J.; Sanchez, K. M.; Delord, T. Inorg. Chem. 1988, 27, 821.
32. O’Neal, S. C.; Kolis, J. W. Inorg. Chem. 1989, 28, 2780.
33. (a) Goh, L. Y.; Chen, W.; Sinn, E. Chem. Commun. 1985, 462. (b)Herrmann, W. A.; Rohrmann, J. Chem. Ber. 1986, 119, 1437. (c) Chen, W.; Goh, L. Y. Organometallics 1988, 7, 2020.
34. Simmon, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827.
35. Gordon, A. J.; Ford, R. A. The Chemist’s Compasion; Wiely: New York, 1972; p445.
36. Grillone, M. D.; Kedzia, B. B. J. Organomet. Chem. 1977, 140, 161.
37. (a) Abel, E. W.; Butler, I. S.; Reid, J. G. J. Chem. Soc. 1963, 2068. (b) Fischer, E. O.; Öfele, K. Z. Naturforsch. 1959, 14b, 763. (c) Fischer, E. O.; Öfele, K. Z. Chem. Ber. 1960, 93, 1156.
38. Bachman, R. E.; Whitmire, K. H. Inorg. Chem. 1994, 33, 2527.
39. (a) Tata, D. P.; Knipple, W. R.; Augl, J. M. Inorg. Chem. 1962, 1, 433 . (b) Herrmann, W. A.; Salzer, A.; Eds. Synthetic Methods of Organome-tallic and Inorganic Chemistry (Herrmann/Brauer); Georg Thieme Verlag, Stuttgart, Germany, 1997; vol. 1 p120.
40. Stauf, S.; Reisner, C.; Tremel, W. Chem. Commum. 1996, 1749.
41. Shriver, D. F.; Atkins, P. W.; Langford, C. H. Inorganic Chemistry 3rd Oxford ,1994 ; p177.
42. Van Hal, J. W.; Whitmire, K. H. Organometallics 1998, 17, 5197.
43. 程建彰,國立台灣師範大學博士論文,2000.
44. Averill, B A.; Eldredge, P. A.; Bose, K. S.; Barber, D. E.; Bryan, R. F.; Sinn, E.; Rheigold, A. J. Am. Chem. Soc. 1991, 113 , 2365.
45. (a) 黃國智,國立台灣師範大學博士論文,1998. (b) 吳美芬,未發表結果.
46. Mathur, P.; Sekar, P. Organometallics 1997, 16, 142.
47. 鍾瑞霖,國立台灣師範大學碩士論文,2000.
48. Shieh, M.; Mia, F.-D.; Peng, S.-M.; Lee, G.-H Inorg. Chem. 1993, 32, 2785.
49. Ven Hal, J. W.; Whitmire, K. H.; Zouchoune, B.; Halent, J.-F.; Saillard, J.-Y. Inorg. Chem. 1995, 34, 5455.
50. Lin, J. T.; Ellis, J. E. J. Am. Chem. Soc. 1983, 105 , 6252.
51. Curtis, M. D.; Butler, W. M. Chem. Commum. 1980, 998.
52. Adel, J.; Weller, F.; Dehnicke, K. J. Organomet. Chem. 1988, 347, 343.
53. Belin, C.; Makani, T.; Roziere, J. Chem. Commum. 1985, 118.
54. Rink, B.; Brorson, M. Organometallics 1999, 18, 2309.
55. Behrens, H.; Haag, W. Chem. Ber. 1961, 94, 320.
56. (a) Angelici, R. G.; Gingerich, R. G. W. J. Am. Chem. Soc. 1979, 101 , 5604. (b) Angelici, R. G.; Gingerich, R. G. W. Organometallics 1983, 2, 89.
57. Suss, G.; Herberhold, M. J. Chem. Research (S), 1977, 246.
58. (a) Behrens, H.; Linnder, E.; Birkle, S. Z. Anorg. Allg. Chem. 1969, 369, 131. (b) Hausmann, H.; Hoefler, M.; Kruck, T.; Zimmermann, H. W. Chem. Ber. 1981, 114, 975.
59. Das, B. K.; Kanatzidis, M. G. Inorg. Chem. 1995, 34, 1011.
60. Rohrmauu, J.; Herrmann, W. A. J. Organomet. Chem. 1984, 273, 211.
61. Roof, L. C.; Pennington, W. T.; Kolis, J. W. J. Am. Chem. Soc. 1990, 112 , 8172.
62. Borm, J.; Huttner, G.; Zsolnai, L. Angew. Chem., Int. Ed. Engl. 1985, 24, 1069.
63. Huang, K.-C.; Tasi, Y.-C.; Lee, G.-H.; Peng, S.-M.; Shieh, M. Inorg. Chem. 1997, 36, 4421.
64. 楊惠雅,國立台灣師範大學碩士論文,2000.
65. Whitmire, K. H.; Shieh, M.; Lagrone, C. B.; Robinson, G. H.; Churchill, M. R.; Fettinger, J. C.; See, R. F. Inorg. Chem. 1987, 26, 2798.
66. Well, A. F. Structural Inorganic Chemistry, 5th ed.; Clarendon: Oxford, 1984: pp 1279 and 1288. Pauling, L. The Nature of the Chemical Bond, 3rd ed.: Cornell University Press: Ithaca, NY, 1960: p256.
67. Kamiguchi, S.; Imoto, H.; Saito, T. Inorg. Chem. 1998, 37, 6852.
68. Pasynskii, A. A.; Eremenko, I. L.; Rakitin, Y. V.; Novotortsev, V. M.; Ellert, O. G.; Kalinnikov, V. T.; Shklover, V. E.; Strucchkov, Y. T.; Lindeman, S. V.; Kurbanov, T. K.; Gasanov, G. S. J. Organomet. Chem. 1983, 248, 309.
69. Goh, L. Y.; Daniello, M. J.; Slater, S.; Muetterties, E. L.; Tavanaielour, I.; Chang, M. I.; Fredich, M. F.; Day, V. W. Inorg. Chem. 1979, 18, 192.
70. O’Neal, S. C.; Kolis, J. W. J. Am. Chem. Soc. 1988, 110 , 1971.
71. Mauther, P.; Hossain, M. M.; Rheingold, A. L. Organometallics 1993, 12, 5029.
72. Baird, P.; Bandy, J. A.; Green, M. L. H.; Hamnett, A.; Marseglia, E.; Obertelli, D. S.; Prout, K.; Qin, J. J. Chem. Soc., Dalton Trans. 1991, 2377.
73. Curtis, M. D.; Butter, W. M. Chem. Commun. 1980, 998.
74. Killthau, T.; Nuber, Bernd.; Ziegler, M. L. Chem. Ber. 1995, 128, 197.
75. Clegg, W.; Compton, N. A.; Errington, R. J.; Fisher, G. A.; Hockless, D. C. R.; Norman, N. C.; Willliam, N. A. L.; Straford, S. E.; Nichlos, S. J.; Jarrett, P. S.; Orpen, A. G. J. Chem. Soc., Dalton Trans. 1992, 193.
76. T’suen, J.; Eill, J. E. J. Am. Chem. Soc. 1983, 105,6252.
77. Handy, L. B.; Ruff, J. K.; Dahl, L. E. J. Am. Chem. Soc. 1970, 92,7312.
78. Blechschmitt, K.; Pfisterer, H.; Zahn, T.; Ziegler, M. L. Angew. Chem., Int. Ed. Engl. 1985, 24, 67.
79. Whitmire, K. H.; Shieh, M.; Cassidy, J. Inorg. Chem. 1989, 28, 3164.
80. Zhang, X.; Dullaghan, C. A.; Watson, E. J.; Carpenter, G. B.; Sweigart, D. A. Organometallics 1998, 17, 2067.
81. 林淑芬,未發表結果.
82. (a)Johnnson, B. F. G.; Layer, T. M.; Lewis, J.; Martin, A.; Raithby, P. R. J. Organomet. Chem. 1992, 429, C41. (b) Mauthur, P.; Hossain, M. M.; Rashid, R. S. J. Organomet. Chem. 1993, 448, 211.
83. Layer, T. M.; Lewis, J.; Martin, A.; Raithby, P. R.; Wong, W.-T. J. Chem. Soc., Dalton Trans. 1992, 3411.
84. Baistrocchi, P.; Cauzzi, D.; Lanfranchi, M.; Predieri, G.; Tiripicchio, A.; Camellini, M. T. Inorg. Chim. Acta. 1995, 235, 173.
85. Adams, R. D.; Katahira, D. A. Organometallics 1982, 1, 53.
86. (a) Halet, J.-F.; Hoffmann, R.; Saillard, J.-Y. Inorg. Chem. 1985, 24, 1695. (b) Adamss, R. D.; Belinsski, J. A.; Pompeo, M. P. Organome-tallics 1992, 11, 3129.
87. Mathur, P.; Thimmappa, B.H.S. J. Organomet. Chem. 1989, 365, 363.
88. Lang, H.; Huttner, G.; Sigwarth, B.; Jibril, I.; Zsolnai, L.; Orama, O. J. Organomet. Chem. 1986, 304, 137.
89. Voss, E. J.; Stern, C. L.; Shriver, D. F. Inorg. Chem. 1994, 33, 1087.
90. Adams, R. D.; Babin, J. E.; Wang, J.-G.; Wu, W. Inorg. Chem. 1989, 28, 703.
91. Whitmire, K. H.; Shieh, M.; Lagrone, C. B.; Robinson, B. H.; Churchill, M. R.; Fettinger, J. C.; See, R. F. Inorg. Chem. 1987, 26, 2798.
92. Adams, R. D.; Babin, J. E.; Natarajan, K.; Tasi, M.; Wang, J. G. Inorg. Chem. 1987, 26, 3708.
93. Koide, Y.; Bautista, M. T.; White, P. S.; Schauer, C. K. Inorg. Chem. 1992, 31, 3690.
94. 蔡易州、程建彰、陳榮倉,未發表結果.
95. Whitmire, K. H.; Leigh, J. S.; Shieh, M.; Fabiano, M. D.; Rheingold, A. L. New J. Chem. 1988, 12, 397
96. Bachman, R. E.; Miller, S. K.; Whitmire, K. H. Organometallics 1995, 14, 796.
97. Luo, S.; Whitmire, K. H. J. Organomet. Chem. 1989, 376, 297.
98. (a) Ceriotti, A.; Resconi, L.; Demartin, F.; Longoni, G.; Manassero, M.; Sansoni, M. J. Organomet. Chem. 1983, 249, C35. (b) Goudsmit, R. J.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Whitmire, K. H. Chem. Commun. 1983, 246.
99. Schauer, C. K.; Shriver, D. F. Angew. Chem., Int. Ed. Engl. 1987, 26, 255.
100. Seyerl, J. v.; Sigwarth, B.; Schmid, H.-G.; Mohr, G.; Frank, A.; Marsili, M.; Huttner, G. Chem. Ber. 1981, 114, 1392.
101. Lindquist, O.; Lehman, M. S. Acta. Chem. Scand. 1973, 27, 85.
102. Strauss, S. H.; Noirot, M. D.; Andreson, O. P. Inorg. Chem. 1985, 24, 4307.
103. (a) Kropshofer, H.; Leitzke, O.; Peringer, P.; Sladky, F. Chem. Ber. 1981, 114, 2644. (b) Sawyer, J. F.; Schrobilgen, G. J. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1982, B38, 1561.
104. Strauss, S. H.; Abney, K. D.; Long, K. M.; Anderson, O. P. Inorg. Chem. 1984, 23, 1994.
105. Herrmann, W. A.; Rohrmann, J.; Ziegler, M. L.; Zahn, T. J. Orga-nomet. Chem. 1984, 273, 221.
106. Blacque, O.; Brunner, H.; Kubicki, M. M.; Nuber, B.; Strubenhofer, B.; Wachter, J.; Wrackmeyer, B. Angew. Chem., Int. Ed. Engl. 1997, 36, 352.
107. Roof, L. C.; Pennington, W. T.; Kolis, J. W. J. Am. Chem. Soc. 1990, 112, 8172.
108. Eichhorn, B.W.; Haushalter, R. C.; Cotton, F. A.; Wilson, B. Inorg. Chem. 1988, 27, 4058.
109. Fedin, V. P.; Kalinina, I. V.; Virovets, A. V.; Podberezskaya, N. V.; Sykes, A. G. Chem. Coummun. 1998, 237
110. Bogan, L. E.; Rauchfuss, T. B.; Rheingold, A. L. J. Am. Chem. Soc. 1985, 107, 3848.