簡易檢索 / 詳目顯示

研究生: 何莉芳
Li-Fang Ho
論文名稱: 含硒或碲之鉻金屬羰基化合物的系統研究
Synthesis and Characterization of Group 6 (M= Cr, Mo) Carbonyl Chalcogenides Complexes
指導教授: 謝明惠
Shieh, Ming-Huey
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 270
中文關鍵詞: 團簇化合物羰基
英文關鍵詞: cluster, carbonyl
論文種類: 學術論文
相關次數: 點閱:163下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • [1] 硒(Se)-鉻(Cr)系統的研究
    使用Se金屬粉末或是其氧化物(Na2SeO3、SeO2),與Cr(CO)6、Et4NBr,以1:2的比例在鹼性甲醇溶液中,加熱反應可得雙三角錐結構的[Et4N]2[Se2Cr3(CO)10]。利用相同條件,[S2Cr3(CO)10]2-亦可成功地被合成出。
    將[Se2Cr3(CO)10]2-與MeOTf反應,可得單甲基及雙甲基化合物[MeSeCr3(CO)15]-、{MeSeCr(CO)4}2,並探討兩化合物之間的關係。然而,與其他有機試劑RX (R = C3H3, X = Cl, Br; R = CH3, X = I) 反應,則僅得穩定的單核產物[XCr(CO)5]-(X = Cl、Br、I)。
    此外,與第八族的異核金屬Fe(CO)5、Ru3(CO)12反應,分別得已知產物[SeFe3(CO)9]2-與具八面體結構的[HSe2Ru4(m-CO)2(CO)8]-、[Se2Ru4(m-CO)4(CO)8]2-。而將[Se2Cr3(CO)10]2-與1當量的Mo(CO)6在丙酮中反應,可得混合鉻鉬金屬的化合物 [Se2MoCr2(CO)10]2-;若以過量的Mo(CO)6反應,則得高產率完全取代的[Se2Mo3(CO)10]2- 。
    至於[Se2Cr3(CO)10]2-與 Mn(CO)5Br的反應在丙酮中反應,可得兩種不同形式且結構特殊的混合鉻-錳金屬化合物,分別是 [Me2CSe2Cr2Mn(CO)14]-與[ Se2Cr2Mn3(CO)20]-。
    [2] 碲(Te)-鉻(Cr)系統的研究
    將Te與Cr(CO)6、KOH以1:2的比例在甲醇溶液中反應,先形成[HTe{Cr(CO)5}2]-,但目前並無證據顯示其存在,再加入Et4NBr則可得綠色不安定化合物[Te{Cr(CO)5}2]2-。然而當我們改用鹼度較小的NaOH,依相同條件則得單甲基化合物[MeTe{Cr(CO)5}2]-,推測甲基是來自所使用的溶劑MeOH。若以[Te{Cr(CO)5}2]2-與MeOTf反應,僅生成雙甲基化合物Me2Te{Cr(CO)5}2。
    此外,[Te{Cr(CO)5}2]2-對O2、CH2Cl2極為敏感,會迅速反應生成雙聚合的[L{TeCr2(CO)10}2]2- (L = O, CH2)。 [Te{Cr(CO)5}2]2-再進一步與Cu(CH3CN)4BF4反應,可得已知平面型化合物[Te2Cr4(CO)20]2-。若改與NaOH/MeOH反應,則生成另一已知開放性結構的化合物[Te2Cr4(CO)18]2-。
    至於,提高Cr(CO)6的比例至1:3,所得產物亦很容易與CH2Cl2反應,而生成[CH2ClTe{Cr(CO)5}3]-。
    [3] 碲(Te)-鉬(Mo)系統的研究
    使用Te powder 與 Mo(CO)6 在鹼性甲醇溶液中反應,可得車輪狀化合物 [Te8Mo6(CO)18]2-,此化合物包含三個Te2Mo2平面並以Te22-相連結 ,故亦可由[Te2Mo4(CO)18]2-與Te/KOH反應而得 。若將[Te2Mo4(CO)18]2- 與溴丙烯 H2C=CHCH2Br反應,丙烯基取代起始物中的Mo(CO)5,而生成雙取代化合物[(C3H5)2Te2Mo2(CO)6] 。

    [1] Se-Cr system
    Reflux of Se powder or SeO2、SeO32- with Cr(CO)6、Et4NBr in KOH/MeOH solution yields the closo-cluster [Et4N]2[Se2Cr3(CO)10]. [S2Cr3(CO)10]2- also an be prepared in the similar conditions. Further methylation of [Se2Cr3(CO)10]2- with MeSO3CF3 produces the selenium-methylated complex [MeSe{Cr(CO)5}3]- and {MeSeCr(CO)4}2 . However, the reactions of [Se2Cr3(CO)10]2- with RX (R = C3H3, X = Cl, Br; R = CH3, X = I) form the known mononuclear compounds [XCr(CO)5]- (X = Cl, Br, I)
    Further, reaction of [Se2Cr3(CO)10]2- with Fe(CO)5/KOH gives [SeFe3(CO)9]2-, while treatment with Ru3(CO)12 produces the octahedral complexes [HSe2Ru4(m-CO)2(CO)8]- and [Se2Ru4(m-CO)4(CO)8]2-. Be- sides, [Se2Cr3(CO)10]2- can react with 1 equiv. of Mo(CO)6 in acetone to produce the mixed-metal Cr/Mo cluster [Se2MoCr2(CO)10]2-. On the other hand, reaction of [Se2Cr3(CO)10]2- with excess Mo(CO)6 leads to formation of [Se2Mo3(CO)10]2- in good yield. When [Se2Cr3(CO)10]2- was treated with Mn(CO)5Br in acetone at room temperature, two different types of the unusual mixed-metal clusters [Me2CSe2Cr2Mn(CO)14]- and [Se2Cr2Mn3- (CO)20]- were produced.
    [2] Te-Cr system
    The reaction of Te powder with Cr(CO)6/KOH in a molar ratio of 1:2 in methanol solution forms [HTe{Cr(CO)5}2]- , which can rapidly transform into a highly reactive species [Et4N]2[Te{Cr(CO)5}2] by the addition of Et4NBr . However, the mono-methylated complex [MeTe{Cr(CO)5}2]- can be obtained by using NaOH under the similar conditions, where the methyl group is likely to come from the methanol solvent.
    The reaction of [Te{Cr(CO)5}2]2- with MeSO3CF3 only affords the double-methylated complex Me2Te{Cr(CO)5}2 . [Te{Cr(CO)5}2]2- rapidly transforms to give [X{TeCr2(CO)10}2]2- (X = O, CH2) upon the attack of O2 and CH2Cl2. Besides, the reaction of [Te{Cr(CO)5}2]2- with Cu(CH3CN)4BF4 produces the known compound [Te2Cr4(CO)20]2- while treatment of [Te{Cr(CO)5}2]2- with NaOH/MeOH gives another known compound [Te2Cr4(CO)18]2-.
    When Te powder reacts with Cr(CO)6/KOH in a molar ratio of 1: 3 in methanol solution, the product is found to rapidly transform into a new complex [CH2ClTe{Cr(CO)5}3]- upon the addition of CH2Cl2.
    [3] Te-Mo system
    Reflux of Te powder and Mo(CO)6 in KOH/MeOH solution forms the tire-shaped cluster [Te8Mo6(CO)18]2-, which contains three Te2Mo2 planes linking by Te22- group. This product can be also obtained from the reaction of Te powder with [Te2Mo4(CO)18]2- in the basic alcoholic solution. When [Te2Mo4(CO)18]2- was treated with H2C=CHCH2Br, the double-substituted complex [(C3H5)2Te2Mo2(CO)6] was obtained where the Mo(CO)5 moiety of [Te2Mo4(CO)18]2- is replaced by the incoming C3H5 group.
    The study herein describes the similarities and differences among the reactions of group 6 (Cr, Mo) carbonyls with group 16 chalcogen atoms (S, Se, Te) and discusses as well the effect of basicity and metal size on cluster formation.

    中文摘要.................................... I 英文摘要……………… …………………………………….. III 1. 前言……………………………………………... 1 1.1. 背景………………..……………………………… 1 1.2 研究目標………………………………………... 11 2. 實驗………………………………………………... 12 2.1. 一般方法…………………………………………… 12 2.1-1. 實驗過程…………………………………………… 12 2.1-2. 使用的光譜儀器…………………………………… 12 2.1-3. 實驗溶劑…………………………………………… 13 2.1-4. 使用藥品……………………………………………… 14 2.1-5. 縮寫表………………………………………………… 14 2.2 合成[Et4N]2[Se2Cr3(CO)10]………………………. 16 2.3 [Et4N]2[Se2Cr3(CO)10]與有機試劑的反應….….. 17 2.3-1 [Et4N]2[Se2Cr3(CO)10]的甲基化反應……….… 17 2.3-2 [Et4N]2[Se2Cr3(CO)10]與C3H3X (X = Br, Cl) 的反應19 2.3-3 [Et4N]2[Se2Cr3(CO)10]的加壓反應………………. 20 2.4 [Et4N]2[Se2Cr3(CO)10]與異核金屬的反應………. 21 2.4-1 [Et4N]2[Se2Cr3(CO)10]與 Fe(CO)5 的反應….... 21 2.4-2 [Et4N]2[Se2Cr3(CO)10]與Ru3(CO)12的反應…... 22 2.4-3 [Et4N]2[Se2Cr3(CO)10]與Mo(CO)6的反應……. 22 2.4-4 [Et4N]2[Se2Cr3(CO)10]與Mn(CO)5Br的反應……. 24 2.5 [Et4N]2[S2Cr3(CO)10]的合成與相關反應………. 26 2.5-1 [Et4N]2[S2Cr3(CO)10]的合成…………………. 26 2.5-2 [Et4N]2[S2Cr3(CO)10] 與Mn(CO)5Br的反應……. 27 2.5-3 [Et4N]2[S2Cr3(CO)10] 與Mo(CO)6的反應……. 27 2.6 Te與不同比例Cr(CO)6反應………………..……. 28 2.7 [Et4N]2[Te{Cr(CO)5}2]的相關反應…..………. 31 2.7-1 [Et4N]2[Te{Cr(CO)5}2]與CH2Cl2的反應.………. 31 2.7-2 [Et4N]2[Te{Cr(CO)5}2]與O2的反應..……………. 32 2.7-3 [Et4N]2[Te{Cr(CO)5}2]與MeOH的反應..………. 32 2.7-4 [Et4N]2[Te{Cr(CO)5}2]與MeOTf的反應..………. 33 2.7-5 [K(18-Crown-6)]2[Te{Cr(CO)5}2]的合成.………. 34 2.7-6 [K(18-Crown-6)]2[Te{Cr(CO)5}2]與[Cu(CH3CN)4][BF4]的反應 34 2.8 [PPh4]2[Te2Mo4(CO)18]的相關反應….………. 35 2.8-1 [PPh4]2[Te2Mo4(CO)18]與H2C=CHCH2Br的反應.. 35 2.8-2 [PPh4]2[Te2Mo4(CO)18]與CBr4的反應…..………. 36 2.9 [PPh4]2[Te8Mo6(CO)18]的合成……..……..……. 36 2.10 {MeSeCr(CO)4}2的晶體結構解析…..…..……. 38 2.11 [Et4N][MeSeCr3(CO)15]的晶體結構解析…..……. 41 2.12 [Et4N][HSe2Ru4(m-CO)2(CO)8]的晶體結構解析…. 44 2.13 [Et4N]2[Se2Ru4(m-CO)4(CO)8]的晶體結構解析.. 47 2.14 [Et4N]2[Se2Cr2Mo(CO)10]的晶體結構解析……… 50 2.15 [Et4N]2[Se2Mo3(CO)10]的晶體結構解析……….. 53 2.16 [Et4N][Me2CSe2Cr2Mn(CO)14]的晶體結構解析…… 56 2.17 [Et4N][Se2Mn3Cr2(CO)20]的晶體結構解析…….. 59 2.18 [Et4N]2[S2Cr3(CO)10]的晶體結構解析……..…. 63 2.19 [Et4N]2[Te{Cr(CO)5}2]的晶體結構解析……….. 66 2.20 [PPN][CH2ClTe{Cr(CO)5}3]的晶體結構解析…… 69 2.21 [Et4N]2[O{TeCr2(CO)10}2]的晶體結構解析……. 72 2.22 [Et4N]2[CH2{TeCr2(CO)10}2]的晶體結構解析.…. 75 2.23 [Et4N]2[Te2Cr4(CO)18]的晶體結構解析…………. 78 2.24 [Et4N][MeTe{Cr(CO)5}2]的晶體結構解析……….. 81 2.25 Me2Te{Cr(CO)5}2的晶體結構解析…………….…… 84 2.26 {C3H5TeMo(CO)4}2的晶體結構解析………..……… 87 2.27 [PPh4]2[Te8Mo6(CO)18]的晶體結構解析….……… 90 2.28 [Et4N][Se2Mn3Cr2(CO)20]的磁性分析……..……. 94 3. 結果………………………………………………….. 95 3.1 Se-Cr-CO系統………………………………………… 95 3.1-1 [Et4N]2[Se2Cr3(CO)10]的合………………………. 95 3.1-2 [Et4N]2[Se2Cr3(CO)10]與有.………………... 96 3.1-3 [Et4N]2[Se2Cr3(CO)10]與第八族異核金屬羰基化合物的反應….. 99 3.1-4 [Et4N]2[Se2Cr3(CO)10]與第六族M(CO)6 (M = Mo, W)的反應... 101 3.1-5 [Et4N]2[Se2Cr3(CO)10]與Mn(CO)5Br的反應.…… 103 3.2 S-Cr-O 系統……………………………….…….... 104 3.3 Te-Cr-CO系統……………………………………… 106 3.3-1 Te與不同比例Cr(CO)6的反應………………..….. 106 3.3-2 [Et4N]2[Te{Cr(CO)5}2]的反應性………………. 108 3.3-3 不同鹼度對Te-Cr系統的影響……………………. 110 3.4 Te-Mo-CO系統…………………………………….. 113 3.4-1 Mo(CO)6與不同來源Te的反應…………………… 113 3.4-2 [PPh4]2[Te2Mo4(CO)18]與有機溴化物的反應……. 114 3.5 {MeSeCr(CO)4}2的晶體結構……………….……. 116 3.6 [Et4N][MeSeCr3(CO)15]的晶體結構……….……. 118 3.7 [Et4N][HSe2Ru4(m-CO)2(CO)8]的晶體結構..……. 120 3.8 [Et4N]2[Se2Ru4(m-CO)4(CO)8]的晶體結構.……. 122 3.9 [Et4N]2[Se2Cr2Mo(CO)10]的晶體結構.…..……. 124 3.10 [Et4N]2[Se2Mo3(CO)10]的晶體結構……….……. 126 3.11 [Et4N][Me2CSe2Cr2Mn(CO)14]的晶體結構…...…. 128 3.12 [Et4N][Se2Mn3Cr2(CO)20]的晶體結構….………. 130 3.13 [Et4N]2[S2Cr3(CO)10]的晶體結構………..……. 132 3.14 [Et4N]2[Te{Cr(CO)5}2]的晶體結構……….……. 134 3.15 [PPN][CH2ClTe{Cr(CO)5}3]的晶體結構….……. 136 3.16 [Et4N]2[O{TeCr2(CO)10}2]的晶體結構……….…. 138 3.17 [Et4N]2[CH2{TeCr2(CO)10}2]的晶體結構….……. 140 3.18 [Et4N]2[Te2Cr4(CO)18]的晶體結構……….……. 142 3.19 [Et4N][MeTe{Cr(CO)5}2]的晶體結構……….……. 144 3.20 Me2Te{Cr(CO)5}2的晶體結構….………….……. 146 3.21 {C3H5TeMo(CO)4}2的晶體結構……………….……. 148 3.22 [PPh4]2[Te8Mo6(CO)18]的晶體結構…….…….…. 150 3.23 電化學分析結果…………………………….……. 152 4. 討論………………………………………………… 153 4.1 Se-Cr-CO系統………………………………………… 153 4.1-1 [Et4N]2[E2Cr3(CO)10](E = S, Se)的合成探討…. 153 4.1-2 [Et4N]2[Se2Cr3(CO)10]與有機試劑的反應探討... 155 4.1-3 [Et4N]2[Se2Cr3(CO)10]與Fe(CO)5、Ru3(CO)12的反應探討..…... 158 4.1-4 [Et4N]2[Se2Cr3(CO)10]與Mo(CO)6的反應探討.... 159 4.1-5 [Et4N]2[Se2Cr3(CO)10]與Mn(CO)5Br的反應探討. 162 4.2 Te-Cr-CO系統…………………………………… 165 4.2-1 Te與不同比例Cr(CO)6的反應探討…………..….. 165 4.2-2 [Et4N]2[Te{Cr(CO)5}2]的反應性探討…………. 168 4.2-3 不同鹼度對Te-Cr系統的影響….………………. 170 4.3 Te-Mo-CO系統…………………………………….. 174 4.4 晶體結構討論………………………………….…… 177 4.4-1 具雙三角錐E2M3形式的結構討論………….……. 177 4.4-2 [MeSeCr3(CO)15]-與{MeSeCr(CO)4}2的結構討論… 183 4.4-3 具八面體E2M4形式的結構討論………….………. 184 4.4-4 含Se-Cr-Mn的結構討論………………….………. 187 4.4-5 含Te{Cr(CO)5}2形式的結構討論…….….……. 190 4.4-6 含Te2Mo2形式的結構討論………………….………. 195 4.5 本研究綜合性討論………………………….………. 199 5. 結論……………………………………………... 204 6. 參考資料…………………………………………... 206 7. 附圖

    1. (a) Somorjai, G. A. Chemistry in Two Dimension; Cornell University Press : New York, 1981. (b) Lin, Y. C.; Lu, K. h. Chemistry 1991, 49, 303. (c) Douglas, B.; Mcdaniel, D.; Alexander, J. Concepts and Models of Inorganic Chemistry 3rd Wiley, 1994.
    2. (a) Diéguez, M.; Claver, C.; Masdeu-Bultó, A. M.; Ruiz, A. Organome-tallics 1999, 18, 2107. (b) Räsänen, T. M.; Jäskeläinen, S.; Pakkanen, T. A.; J. Organoment. Chem. 1997, 548, 263. (c) Limberg, C.; Hunger, M.; Kircher, P. Angew. Chem., Int. Ed. Engl. 1999, 38, 1105. (d) Suss-Fink, G.; Haak, S.; Ferrand, V.; Stoeckli-Evans, H. J. Chem. Soc., Dalton Trans. 1997, 3861.
    3. Haak, S.; Neels, A.; Stoeckli-Evans, H.; Suss-Fink, G.; Thomas, C. M. Chem. Commun. 1999, 1959.
    4. Wilknson, G.; Stone, F. G. A.; Abel, E. W. Comprehensive Organme-tallic Chemistry, Pergamon, Oxford, 1982.
    5. Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1.
    6. (a) Chini, P.; Longoni, G.; Albane, V. G. Adv. Organomet. Chem. 1976, 14, 285. (b) King, R. B. Prog, Inorg. Chem. 1972, 15, 287.
    7. Huang, S. P.; Kanatzidies, M. G. J. Am. Chem. Soc. 1992, 114, 5477.
    8. (a) Sinfelt, J. H. Acc. Chem. Res. 1977, 10, 15. (b) Muetterties, E. L. Bull. Soc. Chim. Belg. 1975, 84, 959.
    9. Inagaki, A.; Takemori, T.; Tanaka, M.; Suzuki, H. Angew. Chem., Int. Ed. Engl. 2000, 39, 404.
    10. (a) Nicholls, J. N.; Polyhedron 1984, 3, 1307. (b) Whitimire, K. H.; Lagrone, C. B.; Rheingold, A. L. Inorg. Chem. 1986, 25, 2472.
    11. Inagaki, A.; Takemori, T.; Tanaka, M.; Suzuki, H. J. Am. Chem. Soc. 1999, 121, 7421.
    12. Schmid, G. Angew. Chem., Int. Ed. Engl. 1978, 17, 392.
    13. (a) Johnson, B. F. G.; Layer, T. M.; Lewis, J.; Martin, A.; Raithby, P. R. J. Organomet, Chem. 1992, 429, C41. (b) Mathur, P.; Hossain, M. M.; Rashud, R. S. J. Organomet, Chem. 1993, 448, 211.
    14. Shieh, M.; Tang, T.-F.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 1995, 34, 2797.
    15. Hieber, W.; Gruber, J. Z. Anorg. Allg. Chem. 1958, 296, 91.
    16. Gladysz, J. A.; Wong, V. K.; Jick, B. S. Chem. Commun. 1978, 838.
    17. (a) Roof, L. C.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1992, 31, 2056. (b) Flomer, W. A.; O’Neal, S. C.; Kolis, J. W.; Jeter, D.; Cordes, A. W. Inorg. Chem. 1988, 27, 969.
    18. Das, B. K.; Kanatzidis, M. G. Inorg. Chem. 1995, 34, 5721.
    19. Shieh, M.; Liou, Y.; Jeng, B.-W. Organometallics 1993, 12, 4926 .
    20. Shieh, M.; Liou, Y.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 1993, 32, 2212.
    21. 陳鴻生,國立台灣師範大學碩士論文,1997.
    22. Shieh, M.; Ho, L.-F.; Cherng, J.-J.; Ueng, C.-H.; Peng, S.-M.; Lee, G.-H J. Organomet, Chem. 1999, 587, 176.
    23. Shieh, M.; Shieh, M.-H.; Tsai, Y.-C; Ueng, C.-H. Inorg. Chem. 1995, 34, 5088.
    24. Shieh, M.; Tsai, Y.-K. Inorg. Chem. 1994, 33, 2303.
    25. 詹莉芬,國立台灣師範大學碩士論文,1997.
    26. Shieh, M. J. Cluster Science 1999, 10, 3.
    27. (a) Roof, L. C.; Kolis, J. W. Chem Rev. 1993, 93, 1037. (b) Muthur, P. Adv. Organomet. Chem. 1997, 41, 242. (c) Kanatzidas, M. G.; Huang, S. -P.; Coord. Chem. Rec. 1994, 130, 509.
    28. (a) Ruff, J. K.;King, R. B. Inorg. Chem. 1969, 8, 180. (b) Gingerich, R. W.; Angelici, R. J. J. Organomet. Chem. 1977, 132, 377. (c) Suss, G.; Herberhold, M. Angew. Chem. Int. Ed. Engl. 1976, 15, 366. (d) Karcher, B. A.; Jacobson, R. A. J. Organomet. Chem. 1977, 132, 387 (e) Barnett, G. H.; Copper, M. K. J. Chem. Soc., Dalton Trans. 1978, 587.
    29. Cooper, M. K.; Duckworth, P. A. J. Chem. Soc., Dalton Trans. 1981, 2357
    30. Hoefler, M.; Tebbe, K.-F.; Veit, H.; Weiler, N. E. J. Am. Chem. Soc. 1983, 105, 6338.
    31. (a) Darensbourg, D. J.; Zalewski, D. J. Organometallics 1984, 3, 1598. (b) Darensbourg, D. J.; Zalewski, D. J.; Sanchez, K. M.; Delord, T. Inorg. Chem. 1988, 27, 821.
    32. O’Neal, S. C.; Kolis, J. W. Inorg. Chem. 1989, 28, 2780.
    33. (a) Goh, L. Y.; Chen, W.; Sinn, E. Chem. Commun. 1985, 462. (b)Herrmann, W. A.; Rohrmann, J. Chem. Ber. 1986, 119, 1437. (c) Chen, W.; Goh, L. Y. Organometallics 1988, 7, 2020.
    34. Simmon, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827.
    35. Gordon, A. J.; Ford, R. A. The Chemist’s Compasion; Wiely: New York, 1972; p445.
    36. Grillone, M. D.; Kedzia, B. B. J. Organomet. Chem. 1977, 140, 161.
    37. (a) Abel, E. W.; Butler, I. S.; Reid, J. G. J. Chem. Soc. 1963, 2068. (b) Fischer, E. O.; Öfele, K. Z. Naturforsch. 1959, 14b, 763. (c) Fischer, E. O.; Öfele, K. Z. Chem. Ber. 1960, 93, 1156.
    38. Bachman, R. E.; Whitmire, K. H. Inorg. Chem. 1994, 33, 2527.
    39. (a) Tata, D. P.; Knipple, W. R.; Augl, J. M. Inorg. Chem. 1962, 1, 433 . (b) Herrmann, W. A.; Salzer, A.; Eds. Synthetic Methods of Organome-tallic and Inorganic Chemistry (Herrmann/Brauer); Georg Thieme Verlag, Stuttgart, Germany, 1997; vol. 1 p120.
    40. Stauf, S.; Reisner, C.; Tremel, W. Chem. Commum. 1996, 1749.
    41. Shriver, D. F.; Atkins, P. W.; Langford, C. H. Inorganic Chemistry 3rd Oxford ,1994 ; p177.
    42. Van Hal, J. W.; Whitmire, K. H. Organometallics 1998, 17, 5197.
    43. 程建彰,國立台灣師範大學博士論文,2000.
    44. Averill, B A.; Eldredge, P. A.; Bose, K. S.; Barber, D. E.; Bryan, R. F.; Sinn, E.; Rheigold, A. J. Am. Chem. Soc. 1991, 113 , 2365.
    45. (a) 黃國智,國立台灣師範大學博士論文,1998. (b) 吳美芬,未發表結果.
    46. Mathur, P.; Sekar, P. Organometallics 1997, 16, 142.
    47. 鍾瑞霖,國立台灣師範大學碩士論文,2000.
    48. Shieh, M.; Mia, F.-D.; Peng, S.-M.; Lee, G.-H Inorg. Chem. 1993, 32, 2785.
    49. Ven Hal, J. W.; Whitmire, K. H.; Zouchoune, B.; Halent, J.-F.; Saillard, J.-Y. Inorg. Chem. 1995, 34, 5455.
    50. Lin, J. T.; Ellis, J. E. J. Am. Chem. Soc. 1983, 105 , 6252.
    51. Curtis, M. D.; Butler, W. M. Chem. Commum. 1980, 998.
    52. Adel, J.; Weller, F.; Dehnicke, K. J. Organomet. Chem. 1988, 347, 343.
    53. Belin, C.; Makani, T.; Roziere, J. Chem. Commum. 1985, 118.
    54. Rink, B.; Brorson, M. Organometallics 1999, 18, 2309.
    55. Behrens, H.; Haag, W. Chem. Ber. 1961, 94, 320.
    56. (a) Angelici, R. G.; Gingerich, R. G. W. J. Am. Chem. Soc. 1979, 101 , 5604. (b) Angelici, R. G.; Gingerich, R. G. W. Organometallics 1983, 2, 89.
    57. Suss, G.; Herberhold, M. J. Chem. Research (S), 1977, 246.
    58. (a) Behrens, H.; Linnder, E.; Birkle, S. Z. Anorg. Allg. Chem. 1969, 369, 131. (b) Hausmann, H.; Hoefler, M.; Kruck, T.; Zimmermann, H. W. Chem. Ber. 1981, 114, 975.
    59. Das, B. K.; Kanatzidis, M. G. Inorg. Chem. 1995, 34, 1011.
    60. Rohrmauu, J.; Herrmann, W. A. J. Organomet. Chem. 1984, 273, 211.
    61. Roof, L. C.; Pennington, W. T.; Kolis, J. W. J. Am. Chem. Soc. 1990, 112 , 8172.
    62. Borm, J.; Huttner, G.; Zsolnai, L. Angew. Chem., Int. Ed. Engl. 1985, 24, 1069.
    63. Huang, K.-C.; Tasi, Y.-C.; Lee, G.-H.; Peng, S.-M.; Shieh, M. Inorg. Chem. 1997, 36, 4421.
    64. 楊惠雅,國立台灣師範大學碩士論文,2000.
    65. Whitmire, K. H.; Shieh, M.; Lagrone, C. B.; Robinson, G. H.; Churchill, M. R.; Fettinger, J. C.; See, R. F. Inorg. Chem. 1987, 26, 2798.
    66. Well, A. F. Structural Inorganic Chemistry, 5th ed.; Clarendon: Oxford, 1984: pp 1279 and 1288. Pauling, L. The Nature of the Chemical Bond, 3rd ed.: Cornell University Press: Ithaca, NY, 1960: p256.
    67. Kamiguchi, S.; Imoto, H.; Saito, T. Inorg. Chem. 1998, 37, 6852.
    68. Pasynskii, A. A.; Eremenko, I. L.; Rakitin, Y. V.; Novotortsev, V. M.; Ellert, O. G.; Kalinnikov, V. T.; Shklover, V. E.; Strucchkov, Y. T.; Lindeman, S. V.; Kurbanov, T. K.; Gasanov, G. S. J. Organomet. Chem. 1983, 248, 309.
    69. Goh, L. Y.; Daniello, M. J.; Slater, S.; Muetterties, E. L.; Tavanaielour, I.; Chang, M. I.; Fredich, M. F.; Day, V. W. Inorg. Chem. 1979, 18, 192.
    70. O’Neal, S. C.; Kolis, J. W. J. Am. Chem. Soc. 1988, 110 , 1971.
    71. Mauther, P.; Hossain, M. M.; Rheingold, A. L. Organometallics 1993, 12, 5029.
    72. Baird, P.; Bandy, J. A.; Green, M. L. H.; Hamnett, A.; Marseglia, E.; Obertelli, D. S.; Prout, K.; Qin, J. J. Chem. Soc., Dalton Trans. 1991, 2377.
    73. Curtis, M. D.; Butter, W. M. Chem. Commun. 1980, 998.
    74. Killthau, T.; Nuber, Bernd.; Ziegler, M. L. Chem. Ber. 1995, 128, 197.
    75. Clegg, W.; Compton, N. A.; Errington, R. J.; Fisher, G. A.; Hockless, D. C. R.; Norman, N. C.; Willliam, N. A. L.; Straford, S. E.; Nichlos, S. J.; Jarrett, P. S.; Orpen, A. G. J. Chem. Soc., Dalton Trans. 1992, 193.
    76. T’suen, J.; Eill, J. E. J. Am. Chem. Soc. 1983, 105,6252.
    77. Handy, L. B.; Ruff, J. K.; Dahl, L. E. J. Am. Chem. Soc. 1970, 92,7312.
    78. Blechschmitt, K.; Pfisterer, H.; Zahn, T.; Ziegler, M. L. Angew. Chem., Int. Ed. Engl. 1985, 24, 67.
    79. Whitmire, K. H.; Shieh, M.; Cassidy, J. Inorg. Chem. 1989, 28, 3164.
    80. Zhang, X.; Dullaghan, C. A.; Watson, E. J.; Carpenter, G. B.; Sweigart, D. A. Organometallics 1998, 17, 2067.
    81. 林淑芬,未發表結果.
    82. (a)Johnnson, B. F. G.; Layer, T. M.; Lewis, J.; Martin, A.; Raithby, P. R. J. Organomet. Chem. 1992, 429, C41. (b) Mauthur, P.; Hossain, M. M.; Rashid, R. S. J. Organomet. Chem. 1993, 448, 211.
    83. Layer, T. M.; Lewis, J.; Martin, A.; Raithby, P. R.; Wong, W.-T. J. Chem. Soc., Dalton Trans. 1992, 3411.
    84. Baistrocchi, P.; Cauzzi, D.; Lanfranchi, M.; Predieri, G.; Tiripicchio, A.; Camellini, M. T. Inorg. Chim. Acta. 1995, 235, 173.
    85. Adams, R. D.; Katahira, D. A. Organometallics 1982, 1, 53.
    86. (a) Halet, J.-F.; Hoffmann, R.; Saillard, J.-Y. Inorg. Chem. 1985, 24, 1695. (b) Adamss, R. D.; Belinsski, J. A.; Pompeo, M. P. Organome-tallics 1992, 11, 3129.
    87. Mathur, P.; Thimmappa, B.H.S. J. Organomet. Chem. 1989, 365, 363.
    88. Lang, H.; Huttner, G.; Sigwarth, B.; Jibril, I.; Zsolnai, L.; Orama, O. J. Organomet. Chem. 1986, 304, 137.
    89. Voss, E. J.; Stern, C. L.; Shriver, D. F. Inorg. Chem. 1994, 33, 1087.
    90. Adams, R. D.; Babin, J. E.; Wang, J.-G.; Wu, W. Inorg. Chem. 1989, 28, 703.
    91. Whitmire, K. H.; Shieh, M.; Lagrone, C. B.; Robinson, B. H.; Churchill, M. R.; Fettinger, J. C.; See, R. F. Inorg. Chem. 1987, 26, 2798.
    92. Adams, R. D.; Babin, J. E.; Natarajan, K.; Tasi, M.; Wang, J. G. Inorg. Chem. 1987, 26, 3708.
    93. Koide, Y.; Bautista, M. T.; White, P. S.; Schauer, C. K. Inorg. Chem. 1992, 31, 3690.
    94. 蔡易州、程建彰、陳榮倉,未發表結果.
    95. Whitmire, K. H.; Leigh, J. S.; Shieh, M.; Fabiano, M. D.; Rheingold, A. L. New J. Chem. 1988, 12, 397
    96. Bachman, R. E.; Miller, S. K.; Whitmire, K. H. Organometallics 1995, 14, 796.
    97. Luo, S.; Whitmire, K. H. J. Organomet. Chem. 1989, 376, 297.
    98. (a) Ceriotti, A.; Resconi, L.; Demartin, F.; Longoni, G.; Manassero, M.; Sansoni, M. J. Organomet. Chem. 1983, 249, C35. (b) Goudsmit, R. J.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Whitmire, K. H. Chem. Commun. 1983, 246.
    99. Schauer, C. K.; Shriver, D. F. Angew. Chem., Int. Ed. Engl. 1987, 26, 255.
    100. Seyerl, J. v.; Sigwarth, B.; Schmid, H.-G.; Mohr, G.; Frank, A.; Marsili, M.; Huttner, G. Chem. Ber. 1981, 114, 1392.
    101. Lindquist, O.; Lehman, M. S. Acta. Chem. Scand. 1973, 27, 85.
    102. Strauss, S. H.; Noirot, M. D.; Andreson, O. P. Inorg. Chem. 1985, 24, 4307.
    103. (a) Kropshofer, H.; Leitzke, O.; Peringer, P.; Sladky, F. Chem. Ber. 1981, 114, 2644. (b) Sawyer, J. F.; Schrobilgen, G. J. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1982, B38, 1561.
    104. Strauss, S. H.; Abney, K. D.; Long, K. M.; Anderson, O. P. Inorg. Chem. 1984, 23, 1994.
    105. Herrmann, W. A.; Rohrmann, J.; Ziegler, M. L.; Zahn, T. J. Orga-nomet. Chem. 1984, 273, 221.
    106. Blacque, O.; Brunner, H.; Kubicki, M. M.; Nuber, B.; Strubenhofer, B.; Wachter, J.; Wrackmeyer, B. Angew. Chem., Int. Ed. Engl. 1997, 36, 352.
    107. Roof, L. C.; Pennington, W. T.; Kolis, J. W. J. Am. Chem. Soc. 1990, 112, 8172.
    108. Eichhorn, B.W.; Haushalter, R. C.; Cotton, F. A.; Wilson, B. Inorg. Chem. 1988, 27, 4058.
    109. Fedin, V. P.; Kalinina, I. V.; Virovets, A. V.; Podberezskaya, N. V.; Sykes, A. G. Chem. Coummun. 1998, 237
    110. Bogan, L. E.; Rauchfuss, T. B.; Rheingold, A. L. J. Am. Chem. Soc. 1985, 107, 3848.

    下載圖示
    QR CODE