簡易檢索 / 詳目顯示

研究生: 謝振源
Hsieh, Chen-Yuan
論文名稱: 鐵/銥應變能與銀/石墨烯/鈷/銥異向能探討與磁性研究
Investigation of Fe/Ir strain energy and Ag/Graphene/Co/Ir magnetic anisotropy energy and related magnetic properties
指導教授: 蔡志申
Tsay, Jyh-Shen
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 105
中文關鍵詞: 面心立方應變能石墨烯異向能斯格明子
DOI URL: http://doi.org/10.6345/NTNU201900748
論文種類: 學術論文
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文包含兩個研究系統,一個是鐵/銥(111)系統,另一個是銀/石墨烯 /鈷/銥(111)系統。在鐵/銥系統研究中,根據磁光柯爾效應儀量測的結果, 當鐵薄膜厚度為三個原子層時,系統呈現非鐵磁性的行為,當鐵薄膜厚度 大於三個原子層後,磁光柯爾效應儀才量測到磁滯現象,並且磁化強度會 隨著薄膜厚度增加而呈線性增加。搭配低能量電子繞射儀的實驗結果,鐵 薄膜厚度在三個原子層以內時,繞射亮點的圖形是1 × 1結構,代表此時鐵 薄膜為面心立方結構,而隨著鐵薄膜厚度大於三個原子層時,在原來繞射 亮點的附近出現衛星亮點,這樣的結構是 Kurdjumov-Sachs 組織,即體心 立方(110)與面心立方(111)重疊的結構。由於結構上有所變化,而這變化在 一般情況下會是一個連續變化,所以系統結構會有一定的伸張或收縮,故 利用應變能計算做為理論模型,發現當系統累積的應變能大於鐵的面心立 方結構之表面自由能時,鐵薄膜無法再繼續成長面心立方結構,此時結構 的成長會變回塊材應有的體心立方結構。 在銀/石墨烯/鈷/銥系統研究中,利用歐傑電子能譜儀量測各層的歐傑 訊號,繪製出不同結構對歐傑訊號圖,來判斷銀和石墨烯經由熱退火後會 移到鈷薄膜的上方。而由於電子在移動的時候會因為非彈性碰撞有所影響, 故利用歐傑電子能譜儀量測到的鈷歐傑訊號做模擬,發現鈷薄膜到七個原 子層都還是層狀結構,因為石墨烯與非磁性覆蓋層接觸會改變異向能,故 利用磁光柯爾效應儀量測系統磁性,發現鈷薄膜的垂直磁化層厚度增加, 並利用異向能計算公式發現介面異向能從沒有銀的 1.59 mJ/m2 提升為 3.12 mJ/m2。希望從異向能提升來推測整個系統是具備 Dzyaloshinskii−Moriya Interaction,故將利用計算出的異向能數值帶入出 Dzyaloshinskii−Moriya interaction 造成的局部反向場的方程式進行計算,在計算的過程中得到上 下 介 面 的 Dzyaloshinskii−Moriya 密度值 , 建 構 出 不 同 厚 度 下 Dzyaloshinskii−Moriya Interaction 造成的局部反向場的數值變化。 期望能藉由各項數值計算來量化不同情況下的系統並搭配實驗結果來推演 至其它系統上,且提供預期系統會有何種物理現象的一個計算管道。在結構出 現應變的系統上,利用應變能計算將結構轉變的厚度計算出來,在磁性系 統中,利用異向能計算得出垂直磁化層數,並搭配 DMI 計算,將系統磁性 要考慮的因素納入,完善磁性薄膜的理論計算。

    中英對照表 iii 摘要 v 第一章 序論 1 第二章 基本概念 11 2-1 物理氣相沉積 (physical vapor deposition, PVD) 13 2-2 化學氣相沉積 (chemical vapor deposition, CVD) 16 2-3 磁異向能 (magnetic anisotropy energy) 19 2-4 晶格結構 (lattice structure) 21 2-5 表面自由能 (surface free energy) 23 2-6 合金相圖 (alloy phase diagram) 25 第三章 實驗儀器及科學原理 32 3-1 樣品備製 32 3-1-1 樣品清理 32 3-1-2 鐵/銥系統的成長 33 3-1-3 銀/石墨烯/鈷/銥(111)系統的成長 34 3-2 分析儀器 36 3-2-1 歐傑電子能譜儀 (Auger electron spectroscopy, AES) 38 3-2-2 低能量電子繞射儀 (low-energy electron diffraction, LEED) 42 3-2-3 表面磁光柯爾效應 (surface magneto-optic Kerr effect, SMOKE) 47 第四章 結果與討論 52 4-1 鐵/銥系統應變能探討 52 4-1-1 磁性與結構 52 4-1-2 晶格參數轉換 56 4-1-3 應變能密度 58 4-1-4 總應變能 64 4-2 銀薄膜對石墨烯/鈷/銥(111)的影響 67 4-2-1 歐傑模擬 67 4-2-2 系統磁性 75 4-2-3 異向能計算 78 4-2-4 Dzyaloshinskii−Moriya Interaction計算 82 第五章 結論 87 附錄一 面心立方層距與晶格常數關係計算 89 附錄二 體心立方層距與晶格常數關係計算 91 附錄三 補充說明鈷在不同系統上的應變 93 參考資料 94

    [01] C.L. Lin, A. W. Wu, Y. C. Wang, Y. C. Tseng, and J. S. Tsay, Spin reorientation transitions and structures of electrodeposited Ni/Cu(100) ultrathin films with and without Pb additives, Phys. Chem. Chem. Phys., 15(7), pp. 2360–2367 (2013).
    [02] J. Brona, R. Wasielewski, and A. Ciszewski, Ultrathin films of Cu on Ru(10-10): Flat bilayers and mesa islands, Appl. Surf. Sci., 258(24) pp. 9623–9628 (2012).
    [03] K. Leistner, N. Lange, J. Haenisch, S. Oswald, F. Scheiba, S. Faehler, H. Schloerb, and L. Schultz, Electrode processes and in situ magnetic measurements of FePt films in a LiPF6 based electrolyte, Electrochimica Acta, 81, pp. 330–337 (2012).
    [04] J. Geshev, A. Guendel, I. Zaharieva, and J. E. Schmidt, Edge atoms effects on the perpendicular anisotropy of ultrathin magnetic layers, Appl. Phys. Lett., 101(13), p. 132407 (2012).
    [05] D. Boettcher, A. Ernst, and J. Henk, Noncollinear magnetism in ultra-thin films with strong spin-orbit coupling from Ab initio, J. Nanosci. Nanotechnol.,12(9), pp. 7516–7519 (2012).
    [06] G. Bian, L. X. Zhang, Y. Liu, T. Miller, and T. C. Chiang, Illuminating the surface spin texture of the giant-rashba quantum-well system Bi/Ag(111) by circularly polarized photoemission, Phys. Rev. Lett., 108(18), p. 186403 (2012).
    [07] Y. J. Chen, C. C. Chang, H. Y. Ho, and J. S. Tsay, Effects of interfacial structure on the magnetic properties of ultrathin Fe/Pt(111) films with Ag buffer layer, Thin Solid Films, 519(23), pp. 8343–8346 (2011).
    [08] C. S. Shern, J. S. Tsay, H. Y. Her, Y. E. Wu and R. H. Chen, Response and enhancement of surface magneto-optic Kerr effect for Co–Pt(111) ultrathin films and surface alloy, Surf. Sci. 429(1-3) pp. L497-L502 (1999).
    [09] A.Meyer, J. I. Flege, R. E. Rettew, S. D. Senanayake, T. Schmidt, F. M. Alamgir, and J. Falta, Ultrathin silver films on Ni(111), Phys. Rev. B, 82(8), p. 085424 (2010).
    [10] D. C. Fu, P. P. Huang, and U. Bach, Platinum coated counter electrodes for dye-sensitized solar cells fabricated by pulsed electrodeposition-correlation of nanostructure, catalytic activity and optical properties, Electrochimica Acta, 77, pp.121–127 (2012).
    [11] R. F. Zhang, J. Wang, I. J. Beyerlein, A. Misra, and T. C. Germann, Atomic-scale study of nucleation of dislocations from fcc-bcc interfaces, ACTA Mater., 60(6–7), pp.2855–2865 (2012).
    [12] H.Y. Ho, Y.C. Lee, and J.S. Tsay, Depression of the Coercive Force via Oxygen Exposure of Ultrathin Fe/Pt(111) Films, IEEE Trans. Magn. 46(6), 1360 (2010).
    [13] C. H. T. Chang, W. H. Kuo, Y. C. Chang, J. S. Tsay and S. L. Yau, Tuning coercive force by adjusting electric potential in solution processed Co/Pt(111) and the mechanism involved, Sci. Rep., 7, 43700 (2017).
    [14] H. Y. Ho, C. C. Chang, H. H. Wu, Y. J. Chen and J.S. Tsay, Magnetic Properties of Ultrathin Fe/Ag/Fe Sandwich on Pt(111)。IEEE Trans. Magn., 47(10), p3901-3904 (2011).
    [15] Po-Yu Yen, Sih-Zih Chen, Hsin-Ling Tu, Heng-Liang Wu, Shueh-Lin Yau, and Jyh-Shen Tsay, Epitaxial Electrodeposition of Cobalt on a Pt(111) Electrode Covered with a Cu(111) Film, J. Phys. Chem. C, 115(48), 23802 (2011).
    [16] S. Yamaguchi, K. Morimoto, J. Fukuda, and H. Suzuki, Electrowetting-based pH- and biomolecule-responsive valves and pH filters, Biosens. Bioelectron., 24(7), pp.2171–2176 (2009).
    [17] W. H. Chen, S. C. Wang, Y. W. Tseng, D. C. Tsai, and J. S. Tsay, The formation of a surface alloy for Ag/Ir(111) ultrathin films, Surf. Sci. 605, 2045 (2011).
    [18] W. Y. Chan, D. C. Tsai, W. H. Chen, C. H. T. Chang, and J. S. Tsay, Enhancement of polar coercive force for annealed Co/Ir(111) ultrathin films, J. Korean Phys. Soc. 62(12), 1945 (2013).
    [19] J. S. Tsay, D. C. Tsai, C. H. T. Chang, and W. H. Chen, Ag-related alloy formation and magnetic phases for Ag/Co/Ir(111) ultrathin films, Thin Solid Films, 548, 475 (2013).
    [20] B. A. Hamad, J. M. Khalifeh, and C. Demangeat, “Spin polarization of Fe monolayers on Ir substrates,” Surf. Sci., 525(1–3), 100–106 (2003).
    [21] D. Spišáka and J. Hafner, “Reconstruction and de-reconstruction of the Ir(100) surface and ultrathin Fe/Ir(100)films,” Surf. Sci, 546(1), 27–38 (2003).
    [22] K. von Bergmann, S. Heinze, M. Bode, G. Bihlmayer, S. Blügel, and R.Wiesendanger, Complex magnetism of the Fe monolayer on Ir(111), New J. Phys., 9, 396 (2007).
    [23] K. Louzazna and A. Haroun, Magnetic and electronic properties of strained fcc Fe on Ir(001), Thin Solid Films, 374(1), 114–118 (2000).
    [24] W. H. Chen, P. C. Jiang, C. Y. Hsieh, and J. S. Tsay, Structure related magnetic dead layer for ultrathin Fe/Ir(111) films, IEEE Trans. Magn., 50(1), 2000304 (2014).
    [25] S. Andrieu, M. Piecuch and J. F. Bobo, Fe growth on (0001) HCP RU and (111) FCC IR - consequences for structural and magnetic-properties, Phys. Rev. B, 46(8), 4909–4916 (1992).
    [26] M. Henzler, Growth of epitaxial monolayers, Surf. Sci., 357(1–3), 809–819 (1996).
    [27] J. S. Tsay and C. S. Shern, Structure evolution for annealing Co ultrathin films on Pt(111), Surf. Sci., 396(1-3), 20, 313-318 (1998).
    [28] M. T. Lin, J. Shen, W. Kuch, H. Jenniches, M. Klaua, C. M. Schneider and J. Kirschner, Growth, morphology, and crystalline structure ofultrathin Fefilms on CuAu(100), Surf. Sci, 410(2–3), 290–311 (1998).
    [29] S. Andrieu, J. F. Bobo, J. Hubsch, and M. Piecuch, Magnetic-properties of body-centered tetragona iron iridium superlattices, J. Magn. Magn. Mater, 126(1–3), 349–351 (1993).
    [30] S. Andrieu, J. Hubsch, E. Snoeck, H. Fischer, and M. Piecuch, Magnetism of BCT Fe in (100) Feir superlattices, J. Magn. Magn. Mater, 148(1–2), 6–8 (1995).
    [31] V. L. Moruzzi, P. M. Marcus, K. Schwarz, and P. Mohn, Ferromagnetic phases of bcc and fcc Fe, Co, and Ni, Phys. Rev. B, 34(3), 1784–1791 (1986).
    [32] J. S. Tsay, C. S. Yang, Y. D. Yao, Y. Liou, and S. F. Lee, Magnetic properties of ultrathin Co/Si(111)films, Jpn. J. Appl. Phys, 37(11), 5976–5979 (1998).
    [33] C. Chuang, W. Y. Chang, W. H. Chen, J. S. Tsay, W. B. Su, H. W. Chang, and Y. D. Yao, Thickness dependent reactivity and coercivity for ultrathin Co/Si(111)films, Thin Solid Films, 519(23), 8371–8374 (2011).
    [34] M. Sambi, G. Granozzi, Strain analysis of epitaxial ultrathin films on Pt ( 111 ), Surf. Sci., 400(1-3), p239-246 (1998).
    [35] T. Kraft and P. M. Marcus, Elastic constants of Cu and the instability of its bcc structure, Phys. Rev. B, 48, 5886 (1993).
    [36] P. M. Marcus, Bending of a film-substrate system by epitaxy, Phys. Rev. B, 53, 7460 (1996).
    [37] Y. T. Chow, B. H. Jiang, C. H. T. Chang and J. S. Tsay, Enhancing the magnetic anisotropy energy by tuning the contact areas of Ag and Ni at the Ag/Ni interface, Phys. Chem. Chem. Phys., 20, p1504-1512 (2018).
    [38] M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder and J. J. de Vries, Magnetic anisotropy in metallic multilayers, Rep. Prog. Phys. 59, p1409–1458 (1996).
    [39] J. Coraux, A. T. N'Diaye, C. Busse and T. Michely, Structural Coherency of Graphene on Ir(111), Nano Lett., 8(2), 565-570 (2008).
    [40] J. Coraux, A. T N'Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F. M. Z. Heringdorf, R. V. Gastel, B. Poelsema and T. Michely, New J. Phys., 11, 023006 (2009).
    [41] E. Loginova, S. Nie, K. Thürmer, N. C. Bartelt and K. F. McCarty, Defects of graphene on Ir(111): Rotational domains and ridges, Phys. Rev. B, 80, 085430 (2009).
    [42] I. Pletikosić, M. Kralj, P. Pervan, R. Brako, J. Coraux, A. T. N'Diaye, C. Busse, and T. Michely, Dirac Cones and Minigaps for Graphene on Ir(111), Phys. Rev. Lett., 102, 056808 (2009).
    [43] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81, 109 (2009).
    [44] M. Batzill, The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects, Surf. Sci. Rep., 67(3-4), 83-115 (2012).
    [45] A.T. N'Diaye, J. Coraux, T.N. Plasa, C. Busse and T. Michely, Structure of epitaxial graphene on Ir(111), New J. Phys., 10, 043033 (2008).
    [46] H. Yang, A. D. Vu, A. Hallal, N. Rougemaille, J. Coraux, G. Chen, A. K. Schmid, M. Chshiev, Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt–Graphene Heterostructures, Nano Lett., 16(1),145-151 (2016).
    [47] F. C. Chen, Y. E. Wu, C. W. Su, and C. S. Shern, Ag-induced spin-reorientation transition of Co ultrathin films on Pt(111), Phys. Rev. B, 66, 184417 (2002).
    [48] T. A. Crowley, B. Daly, M. A. Morri, D. Erts, O. Kazakova, J. J. Boland, B. Wu and J. D. Holmes, Probing the magnetic properties of cobalt–germanium nanocable arrays, J. Mater. Chem., 15, 2408-2413 (2005)
    [49] N. B. Brookes, Y. Chang, and P. D. Johnson, Magnetic interface states and finite-size effects, Phys. Rev. Lett. 67, 354 (1991).
    [50] C. S. Rizal, Y. Ueda, Magnetoresistance and Magnetic Anisotropy Properties of Strain-Induced Co/Ag Multilayer Films, IEEE Trans. Magn., 45, 6 (2009).
    [51] H. Y. Ho, C. C. Chang, H. H. Wu, Y. J. Chen, J. S. Tsay, Magnetic Properties of Ultrathin Fe/Ag/Fe Sandwich on Pt(111), IEEE Trans. Magn., 47, 10 (2011).
    [52] Y. J. Chen, C. C. Chang, H. Y. Ho and J. S. Tasy, Effects of interfacial structure on the magnetic properties of ultrathin Fe/Pt(111) films with Ag buffer layer, Thin Solid Films, 519, 23 (2011).
    [53] 白木靖寬,吉田貞史編著,王建義編譯,薄膜工程學,二版,全華出版社,臺北市,2006。
    [54] 羅吉宗編著,薄膜科技與應用,二版,全華出版社,臺北市,2005。
    [55] 田民波編著,薄膜技術與薄膜材料,初版,五南出版社,臺北市,2007。
    [56] 李正中編著,薄膜光學與鍍膜技術,二版,藝軒出版社,臺北縣,2001。
    [57] J. S. Tsay and C. S. Shern, Rotated incommensurate domains of Co ultrathin films on Pt(111), Surf. Sci., 396(1-3), 20, 319-326 (1998).
    [58] D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, 2nd ed. (William Andrew, New York, 2010).
    [59] 張勁燕,半導體製程設備,第四版,五南出版社,台北市,2005。
    [60] B. D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Massachusetts, 1972).
    [61] H. O. Pierson, Handbook of Chemical Vapor Deposition, 2nd Edition: Principles, Technology and Applications (William Andrew, New York, 1999).
    [62] R. Murali, Graphene Nanoelectronics From Materials to Circuits, Springer, Altanta, USA (2011).
    [63] 王咸捷,國立臺灣師範大學碩士論文 (2015)。
    [64] C.J. Lin, G.L. Gorman, C.H. Lee, R.F.C. Farrow, E.E. Marinero, H.V. Do, H. Notarys, and C.J. Chien, Magnetic and structural properties of Co/Pt multilayers, J. Magn. Magn. Mater. 93, 194 (1991).
    [65] F. J. A. den Broeder, W. Hoving, and P. J. H. Bloemen, Magnetic anisotropy of multilayers, J. Magn. Magn. Mater. 93, 562 (1991).
    [66] N. Rougemaille, A. T. N'Diaye, J. Coraux, C. Vo-Van, O. Fruchart, and A. K. Schmid, Perpendicular magnetic anisotropy of cobalt films intercalated under graphene, Appl. Phys. Lett. 101, 142403 (2012).
    [67] 克拉脫維著,施哲人、唐江濤同譯,晶體,初版,科學出版社,台北市,1974。
    [68] 荷爾頓、辛吉爾合著,晶體與晶體生長,初版,徐氏出版社,台北市,1968。
    [69] C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley & Sons, Inc., New York City, 2004).
    [70] 閻守勝編著、倪澤恩校訂,固態物理槪論,初版,五南圖書出版股份有限公司,臺北市,2006。
    [71] T. A. Roth, The Surface and Grain Boundary Energies of Iron, Cobalt and Nickel, Mater. Sci. Eng. 18, 183 (1975).
    [72] R. J. Needs and M. Mausfield, Calculations of the surface stress tensor and surface energy of the (111) surfaces of iridium, platinum and gold, J. Phys. Condensed Matter 1, 7555 (1989).
    [73] S. R. Wang, Y. Zhang, N. Abidi, L. Cabrales, Wettability and Surface Free Energy of Graphene Films, Langmuir. 25, 11078 (2009).
    [74] G. A. Somorjai, Chemistry in two dimensions surface (Cornell University Press, Ithaca and London, 1981).
    [75] A. T. Price, A. H. Holl and A. P. Greenough, The surface energy and self diffusion coefficient of solid iron above 1350°C, Acta Metall. 12(1), 49-58 (1964).
    [76] M. Hansen, Constitution of Binary Alloys, 2nd ed. (McGRAW-HILL book company, New York, 1958).
    [77] L. J. Swartzendruber, The Fe-Ir (Iron-Iridium) system, Bull. Alloy Phase Diag., 5(1), 48-52 (1984).
    [78] O.K. Goldbeck, Iron—Iridium Fe—Ir. In: IRON—Binary Phase Diagrams. Springer, Berlin, Heidelberg (1982).
    [79] P. P. Patel, M. K. Datta, O. I. Velikokhatnyi, P. Jampani, D. Hong, J. A. Poston, A. Manivannan and P. N. Kumta, Nanostructured robust cobalt metal alloy based anode electro-catalysts exhibiting remarkably high performance and durability for proton exchange membrane fuel cells, J. Mater. Chem. A, 3, 14015-14032 (2015).
    [80] K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerke, Thermodynamic assessment of the Sn–Ag–Co system and solidificationsimulation of the ternary alloy, J. Electron. Mater., 29, 1122-1236 (2000).
    [81] H. Okamoto, Supplemental Literature Review of Binary Phase Diagrams: Ag-Co, Ag-Er, Ag-Pd, B-Ce, Bi-La, Bi-Mn, Cu-Ge, Cu-Tm, Er-Y, Gd-Tl, H-La, and Hg-Te, J. Phase Equilib. Diffus., 36(1), p10-21, (2015).
    [82] MTDATA – Phase Diagram Software from the National Physical Laborator [C-Ir phase diagram]. Retrieved from http://resource.npl.co.uk/mtdata/
    phdiagrams/cir.htm (data of access 2019/07/10)
    [83] MTDATA – Phase Diagram Software from the National Physical Laboratory. keyword: Ag-Ir phase diagram. Retrieved from http://resource.npl.co.uk/mtdata/
    phdiagrams/agir.htm (data of access 2019/07/10)
    [84] MTDATA – Phase Diagram Software from the National Physical Laboratory [C-Co phase diagram]. Retrieved from http://resource.npl.co.uk/
    mtdata/phdiagrams/cco.htm (data of access 2019/07/10)
    [85] MTDATA – Phase Diagram Software from the National Physical Laboratory [Ag-C phase diagram]. Retrieved from http://resource.npl.co.uk/mtdata/
    phdiagrams/agc.htm (data of access 2019/07/10)
    [86] N. R. Gall', E. V. Rut'kov and A. Ya. Tontegode, Physics of the Solid State, 46(2), 371–377 (2004).
    [87] I. Carlomagno, J. Drnec, A. M. Scaparro, S. Cicia, S. Vlaic, R. Felici, and C. Meneghini, Co-Ir interface alloying induced by thermal annealing, J. Appl. Phys, 120, 195302 (2016).
    [88] J. S. Tsay and Y. C. Liu, Magnetic properties of ultrathin Si/Co/Ir(111)films, J. Phys.: Condens. Mater., 20(44), 445003 (2008).
    [89] 李良梧編著,現代物理學,初版,李良梧書坊,臺北市,2004。
    [90] Raymond A. Serway, Clement J. Moses and Curt A. Moyer, Modern physics (Thomson Brooks, Belmont, CA, 2005).
    [91] R.P. Eischens, W.A. Pliskin, The infrared spectra of adsorbed molecules, Adv. Catal., 10, 1 (1958).
    [92] L. H. Little, Infrared Spectra of Adsorbed Species. (Acad. Press, New York 1966).
    [93] M. L. Hair, Infrared Spectroscopy in Surface Chemistry. (Marcel Dekker, New York 1966).
    [94] R. G. Greenler, Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques, J. Chem. Phys. 44, 310 (1966).
    [95] F. M. Hoffmann, Infrared reflection-absorption spectroscopy of adsorbed molecules, Surf. Sci. Rep., 3, 107 (1983).
    [96] G. Etrl and J. Küppers, Low Energy Electrons and Surface Chemistry. Weinheim, Germany: VCH, 1985.
    [97] L. E. Davis et al., Handbook of Auger electron spectroscopy, 2nd ed., (Physical Electronics Industries, Inc., Eden Prairie, 1976).
    [98] S. Tanuma, C.J. Powell and D.R. Penn, Calculation of electron inelastic mean free paths (IMFPs) VII. Reliability of the TPP-2M IMFP predictive equation. Surf. Interf. Analy. 35, 268-275 (2003).
    [99] S. Ichimura, R. Shimizu, J.P. Langeron, Backscattering correction for quantitative Auger analysis III. A simple functional representation of electron backscattering factors, Surf. Sci. 124, L49 (1983).
    [100] C.J. Powell, Inelastic interactions of electrons with surfaces: application to Auger-electron spectroscopy and X-ray photoelectron spectroscopy, Surf. Sci. 299, 34 (1994).
    [101] H. Ibach, Surface Vibrations of Silicon Detected by Low-Energy Electron Spectroscopy, Phys. Rev. Lett. 27, 253 (1971).
    [102] E. P. Lewis, The Effects of a Magnetic Field on Radiation—Memoirs by Faraday, Kerr and Zeeman (American, New York, 1990).
    [103] M. Faraday, Diary, 30 August 1845, 4, 7434, and 7437–7444.
    [104] 金重勳,磁性技術手冊,磁性技術學會,竹東,2002。
    [105] Z.Q. Qiu and S. D. Bader, Surface magneto-optic Kerr effect (SMOKE), J. Magn. Magn. Mater. 200, 664 (1999).
    [106] Z. Q. Qiu and S. D. Bader, Surface magneto-optic Kerr effect, Rev. Sci. Instrum, 71, 1243 (2000).
    [107] Z.Q. Qiu, J. Pearson, and S.D. Bader, Additivity of the magneto-optic Kerr signal in ultrathin Fe(110)/Ag(111) superlattices, Phys. Rev. B 45, 7211 (1992).
    [108] J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 3rd ed., Chap. 8, p. 352, 1999).
    [109] D. Jiles, Introduction to Magnetism and Magnetic Materials (Chapman & Hall, London, 1991).
    [110] M. Zharnikov, A. Dittschar, W. Kuch, C. M. Schneider, and J. Kirschner, Magnetic Order-Disorder Transition Mediated by a Temperature-Driven Structural Transformation, Phys. Rev. Lett., 76, 4620 (1996).
    [111] M. T. Lin, W. C. Lin, C. C. Kuo, and C. L. Chiu, Critical evolution of spin-reorientation transition in magnetic CoxNi1−x/Cu(100) films upon precise variation of d-band filling, Phys. Rev. B, 62, 14268 (2000).
    [112] J. G. Wright, Ferromagnetism in epitaxial F.C.C. iron films, Philos. Mag., 8, 24, Pages 217-223 (2006).
    [113] B. Wei, M. Shima, R. Pati, S. K. Nayak, D. J. Singh, R. Ma, Y. Li, Y. Bando, S. Nasu, P. M. Ajayan, Room‐Temperature Ferromagnetism in Doped Face‐Centered Cubic Fe Nanoparticles, Small, 2, 6, Pages 804-809 (2006).
    [114] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, vol. 7: Theory of Elasticity, 2nd ed., Pergamon Press, Oxford, (1970).
    [115] T. Kraft, P. M. Marcus, M. Methfessel, M. Sheffler, Ferroelectric structure of KNbO3 and KTaO3 from first-principles calculations, Phys. Rev. B, 48, 9 (1993).
    [116] H. Ma, S. L. Qiu and P. M. Marcus, Pressure instability of bcc iron, Phys. Rev. B, 66, 024113 (2002).
    [117] I. Leonov, A. I. Poteryaev, V. I. Anisimov, and D. VollhardtCalculated phonon spectra of paramagnetic iron at the α-γ phase transition, Phys. Rev. B 85, 020401(R) (2012).
    [118] N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature (London) 448, 571 (2007).
    [119] Y. W. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature (London) 444, 347 (2006).
    [120] V. M. Karpan, G. Giovannetti, P. A. Khomyakov, M. Talanana, A. A. Starikov,M. Zwierzycki, J. van den Brink, G. Brocks, and P. J. Kelly, Graphite and Graphene as Perfect Spin Filters, Phys. Rev. Lett. 99, 176602 (2007).
    [121] A. Varykhalov, J. Sánchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, Electronic and Magnetic Properties of Quasifreestanding Graphene on Ni, Phys. Rev. Lett. 101, 157601 (2008).
    [122] F. El Gabaly, K. F. McCarty, A. K. Schmid, J. de la Figuera, M. C. Muñoz, L. Szunyogh, P. Weinberger, and S. Gallego, Noble metal capping effects on the spin-reorientation transitions of Co/Ru(0001), New J. Phys. 10, 073024 (2008).
    [123] B. Santos, S. Gallego, A. Mascaraque, K. F. McCarty, A. Quesada, A. T. N’Diaye, A. K. Schmid, and J. de la Figuera, Hydrogen-induced reversible spin-reorientation transition and magnetic stripe domain phase in bilayer Co on Ru(0001), Phys. Rev. B 85 134409 (2012).
    [124] F. Ajejas, A. Gudín, R. Guerrero, A. A. Barcelona, J. M. Diez, L. M. Costa, P. Olleros, M. A. Niño, S. Pizzini, J. Vogel, M. Valvidares, P. Gargiani, M. Cabero, M. Varela, J. Camarero, R. Miranda and P. Perna, Unraveling Dzyaloshinskii–Moriya Interaction and Chiral Nature of Graphene/Cobalt Interface, Nano Lett. ,18(9), 5364-5372 (2018).
    [125] N. R. Gall’, E. V. Rut’kov, and A. Ya. Tontegode, Interaction of Silver Atoms with Iridium and with a Two-Dimensional Graphite Film on Iridium: Adsorption, Desorption, and Dissolution, Phys. Solid State, 46(2), 371-377 (2004).
    [126] J. S. Tsay, Y. D. Yao and Y. Liou, Magnetic phase diagram study of ultrathin Co/Si(111) films, Surf. Sci., 454-456, 856-859 (2000)
    [127] S. Vlaic, A. Kimouche, J. Coraux, B. Santos, A. Locatelli, and N. Rougemaille, Appl. Phys. Lett., 104, 101602 (2014)
    [128] J. Drnec, S. Vlaic, I. Carlomagno, C. J. Gonzalez, H. Isern, F. Carlà, R. Fiala, N. Rougemaille, J. Coraux and R. Felici, Surface alloying upon Co intercalation between graphene and Ir(111), Carbon, 94, 554-559 (2015).
    [129] G. Deokar, J. Avila, I. R. Colambo, J. L. Codron, C. Boyaval, E. Galopin, M. C. Asensio, D. Vignaud, Towards high quality CVD graphene growth and transfer, Carbon, 89, 82-92 (2015).
    [130] C. D. England, W. R. Bennett and C. M. Falco, Magnetic and structural characterization of copper/cobalt multilayers, J. Appl. Phys, 64, 5757 (1988)
    [131] A. Thiaville, S. Rohart, E. Jué, V. Cros and A. Fert, Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films, EPL, 100, 57002 (2012).
    [132] T. H. Pham, J. Vogel, J. Sampaio, M. Vaňatka, J.-C. Rojas, M. Bonfim, D. S. Chaves, F. Choueikani, P. Ohresser, E. Otero, A. Thiaville, S. Pizzini, Very large domain wall velocities in Pt/Co/Gd trilayers with Dzyaloshinskii-Moriya interaction, EPL, 113, 67001 (2016).
    [133] S. Woo, K. Litzius, B. Kruger, M. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M. Mawass, P. Fischer, M. Kläui, and G. S. D. Beach, Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets, Nat. Mater. 15, 501 (2016).
    [134] A. Hrabec, N. A. Porter, A. Wells, M. J. Benitez, G. Burnell, S. McVitie, D. McGrouther, T. A. Moore, and C. H. Marrows, Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films, Phys. Rev. B, 90, 020402 (2014).
    [135] S.-G. Je, D.-H. Kim, S.-C. Yoo, B.-C. Min, K.-J. Lee, and S.-B. Choe, Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction, Phys. Rev. B 88, 214401 (2013).
    [136] M. J. Benitez, A. Hrabec, A. P. Mihai, T. A. Moore, G. Burnell, D. McGrouther, C. H. Marrows, and S. McVitie, Magnetic microscopy and topological stability of homochiral Néel domain walls in a Pt/Co/AlOx trilayer, Nat. Commun. 6, 8957 (2015).
    [137] G. Chen, J. Zhu, A. Quesada, J. Li, A. T. N’Diaye, Y. Huo, T. P. Ma, Y. Chen, H. Y. Kwon, C. Won, Z. Q. Qiu, A. K. Schmid, and Y. Z. Wu, Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films, Phys. Rev. Lett. 110, 177204 (2013).
    [138] G. Chen, A. Mascaraque, A. T. N’Diaye, and A. K. Schmid, Room temperature skyrmion ground state stabilized through interlayer exchange coupling, Appl. Phys. Lett., 106, 242404 (2015).
    [139] M. Perini, S. Meyer, B. Dupé, S. Malottki, A. Kubetzka, K. Bergmann, Domain walls and Dzyaloshinskii-Moriya interaction in epitaxial Co/Ir(111) and Pt/Co/Ir(111), Phys. Rev. B, 97, 184425 (2018).
    [140] K. Zeissler, M. Mruczkiewicz, S. Finizio, J. Raabe, P. M. Shepley, A. V. Sadovnikov, S. A. Nikitov, K. Fallon, S. McFadzean, S. McVitie, T. A. Moore, G. Burnell and C. H. Marrows, Pinning and hysteresis in the field dependent diameter evolution of skyrmions in Pt/Co/Ir superlattice stacks, Sci. Rep., 7, 15125 (2017).
    [141] A. Belabbes, G. Bihlmayer, F. Bechstedt, S. Blügel and A. Manchon, Hund’s Rule-Driven Dzyaloshinskii-Moriya Interaction at 3d-5d Interfaces, Phys. Rev. Lett. 117, 247202 (2016).
    [142] B. van Dijk, Skyrmions and the Dzyaloshinskii-Moriya interaction, Master’s thesis, Utrecht University, Netherlands (2014).
    [143] P. Gargiani, R. Cuadrado, H. B. Vasili, M. Pruneda & M. Valvidares, Graphene-based synthetic antiferromagnets and ferrimagnets, Nat. Commun., 8, 699 (2017).
    [144] T. H. Pham, J. Vogel, J. Sampaio, M. Vaňatka, J. C. Rojas, M. Bonfim, D. S. Chaves, F. Choueikani, P. Ohresser, E. Otero, A. Thiaville and S. Pizzini, Very large domain wall velocities in Pt/Co/Gd trilayers with Dzyaloshinskii-Moriya interaction, EPL, 113, 67001 (2016)
    [145] N. Nagaosa and Y. Tokura, Topological properties and dynamics of
    magnetic skyrmions, Nat. Nanotechnol., 8, 899-911 (2013).
    [146] T. N. G. Meier, M. Kronseder and C. H. Back, Domain-width model for perpendicularly magnetized systems with Dzyaloshinskii-Moriya interaction, Phys. Rev. B, 96, 144408 (2017).
    [147] G. Andersson and B. Hjörvarsson, Effects of strain on magnetic anisotropy in Fe- and Co-based heterostructures, Phase Transitions, 81, 7-8, p679-701 (2008).
    [148] A. Murayama, K. Hyomi, J. Eickmann and C. M. Falco, Effects of misfit strain due to epitaxial growth on interface perpendicular magnetic anisotropy in ultrathin Co/Au/Cu(111) films, J. Appl. Phys, 87, 9 (2000).
    [149] M. Ohtake, O. Yabuhara, Y. Nukaga and M. Futamoto, Preparation of Co(0001)hcp and (111)fcc Films on Single-Crystal Oxide Substrates, J. Phys.: Conf., 303, 012016 (2011).
    [150] V. M. Marx, C. Kirchlechner, B. Breitbach, M. J. Cordill, D. M. Többens, T. Waitz and G. Dehm, Strain-induced phase transformation of a thin Co film on flexible substrates, Acta Mater., 121, p227-233 (2016).

    無法下載圖示 本全文未授權公開
    QR CODE