研究生: |
張昀穎 Chang, Yun-Ying |
---|---|
論文名稱: |
透過柯爾磁光效應觀察氫氣在磁性薄膜中的擴散 Visualizing hydrogen diffusion in magnetic film through magneto-optical Kerr effect |
指導教授: |
林文欽
Lin, Wen-Chin |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 氫氣 、磁光柯爾效應 、磁性 、鈷鈀合金 |
英文關鍵詞: | hydrogen, Magneto-optical Kerr effect, magnetic, Co-Pd alloy film |
DOI URL: | http://doi.org/10.6345/NTNU201900557 |
論文種類: | 學術論文 |
相關次數: | 點閱:187 下載:40 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究為透過柯爾磁光顯微儀觀察氫氣在鈷鈀合金薄膜中的移動情形,及磁域的變化。樣品皆在超高真空系統下(〖10〗^(-8)torr)利用熱蒸鍍原理將鈷和鈀兩種金屬對鍍形成合金,對鍍完成後,使用柯爾磁光顯微鏡量測氫氣吸附前後的磁光特性改變,以及表面磁域的變化,並分析不同時間下氫氣的擴散情況。鈀在吸附氫氣後會變成氫化鈀,隨著時間的增加,氫氣的吸收量也愈來愈多,可由柯爾顯微儀所量測之磁滯曲線看出氫氣在鈷鈀合金內的擴散情形,藉由殘磁率的變化了解氫氣濃度的擴散及變化。樣品固定Pd的鍍量且Pd的比例為75%,較高比例的Pd有助於觀察氫氣可逆反應之現象。當Co25Pd75的薄膜中的氫氣-金屬之原子比率由0%上升至5%,磁滯曲線的殘磁率亦由20%上升至100%,氫氣在CoPd薄膜中吸收與擴散速率遵守Fick’s擴散定率,擴散係數為3±2×〖10〗^(-12) m^2/s。當氫濃度為2%、3%及4%時的擴散前沿移動速率在缺陷處最快可達50±20nm/s,而在均勻的薄膜的區域則降為30±15nm/s。在氫氣的脫附過程中,合金薄膜中氫含量的橫向擴散速度在30±15nm/s間調節,這些實驗結果證明氫氣在不透明的鈀合金薄膜中,擴散現象是可被觀察的,這些皆可能在未來被應用在氫氣靈敏感測或氫氣儲存系統中。
In this study, we measure hydrogen movement in Co25Pd75 alloy film by magneto-optical Kerr effect microscope. The samples are prepared in an ultra-high vacuum system (UHV) by co-evaporation of Cobalt and Palladium, which form an alloy film. After sample preparation, we use Magneto-Optical Kerr effect microscope to monitor the magneto-optical image of sample during hydrogen diffusion.
While palladium adsorbs hydrogen, it becomes hydrogenated palladium. As time goes by, the adsorption amount of palladium on hydrogen atoms increases. The situation of hydrogen movement in CoPd alloy film can be observed by Kerr effect images. According to the change of magnetic remanence, we can know how the hydrogen diffuses in CoPd alloy. It’s relatively easy to observe the phenomenon of hydrogen reversible reaction in high concentration of Pd, so we make the concentration of Pd at 75%.
When hydrogen-metal atomic ratio in Co25Pd75 alloy film raised from 0% to 5%, the residual magnetization rate in the hysteresis loops also raised from 20% to 100%. The velocity of hydrogen diffusion in CoPd alloy film follow Fick’s diffusion law with the diffusion coefficient of 3±2×〖10〗^(-12) 〖 m〗^2/s. The diffusion velocity of 2%, 3%, and 4% hydrogen concentration front are 30±15 nm/s in the area of uniform film and increases to 50±20nm/s near a defect area.
In the process of hydrogen desorption, lateral diffusion speed of hydrogen content in the alloy film could be regulate as 30±15 nm/s. These experimental results prove that hydrogen diffusion can be observed in nontransparent CoPd alloy film. Those can probably be applied in hydrogen-sensing and -storage technology.
[1] Huiberts JN, Griessen R, Recktor JH, Wijnaarden RJ, Dekker JP, de Groot DG, et al. Yttrium and lanthanum hydride films with switchable optical properties. Nature 1996;380:231.
[2] LedermanD,Wang Y, Morales EH, Matelon RJ, Cabrera GB, Volkmann UG. Magnetooptic properties of Fe/Pd and Co/Pd bilayers under hydrogen absorption. Appl Phys Lett 2004;85:615.
[3] den Broeder FJA, van der Molen SJ, Kremers M, Huiberts JN, Nagengast DG, van Gogh ATM, et al. Visualization of hydrogen migration in solids using switchable mirrors. Nature 1998;394:656–658.
[4 ]Kerssemakers JWJ, van der Molen SJ, Koeman NJ, Günther R, Griessen R. Pixel switching of epitaxial Pd/YHx /CaF. switchable mirrors. Nature 2000;406:489.
[5] Pálsson GK, Bliersbach A,Wolff M, Zamani A, Hjörvarsson B. Using light transmission to watch hydrogen diffuse. Nat Commun 2012;3:892.
[6] Remhof A, van der Molen SJ, Antosik A, Dobrowolska A, Koeman NJ, Griessen R. Switchable mirrors for visualization and control of hydrogen diffusion in transition metals. Phys Rev B 2002;66:020101(R).
[7] Klose F, Rehm C, Nagengast D, Maletta H,Weidinger A. Continuous and reversible change of the magnetic coupling in an Fe/Nb multilayer induced by hydrogen charging. Phys Rev Lett 1997;78:1150.
[8] Hjörvarsson B, Dura JA, Isberg P,Watanabe T, Udovic TJ, Andersson G, et al. Reversible tuning of the magnetic exchange coupling in Fe/V (001) superlattices using hydrogen. Phys Rev Lett 1997;79:901–904.
[9] ZhangW, Luo S, Flanagan TB. Hydrogen solution in homogeneous Pd–Fe alloys. J Alloys Comp 1999;1-6:293–295.
[10] Wang D, Lee KY, Luo S, Flanagan TB. The thermodynamics of hydrogen absorption/desorption by Pd–Co alloys. J Alloys Comp 1997;252:209.
[11] Lueng C, Lupo P, Metaxas PJ, Kostylev M, Adeyeye AO. Nanopatterning-enhanced sensitivity and response time of dynamic palladium/cobalt/palladium hydrogen gas sensors. Adv Mater Tech 2016;1:1600097.
[12] Lueng C, Lupo P, Metaxas PJ, Kostylev M, Adeyeye AO. Nanopatterning-enhanced sensitivity and response time of dynamic palladium/cobalt/palladium hydrogen gas sensors. Adv Mater Tech 2016;1:1600097.
[13] Lin WC, Tsai CJ, Wang BY, Kao CH, Pong WF. Hydrogenation induced reversible modulation of perpendicular magnetic coercivity in Pd/Co/Pd films. Appl Phys Lett 2013;102:252404.
[14] Munbodh K, Perez FA, Keenan C, Lederman D, Zhernenkov M, Fitzsimmons MR. Effects of hydrogen/deuterium absorption on the magnetic properties of Co/Pd multilayers. Phys Rev B 2011;83:094432.
[15] Lin WC, Tsai CJ, Liu XM, Adeyeye AO. Critical hydrogenation effect on magnetic coercivity of perpendicularly magnetized Co/Pd multilayer nanostructures. J Appl Phys 2014;116:073904.
[16] Munbodh K, Perez FA, Lederman D. Changes in magnetic properties of Co/Pd multilayers induced by hydrogen absorption. J Appl Phys 2012;111:123919.
[17] Po-Chun Chang, Yun-Ying Chang, Wei-Hsiang Wang, Fang-Yuh Lo, Wen-Chin Lin(2019). Visualizing hydrogen diffusion in magnetic film through magneto-optical Kerr effect.
[18] Gerber A, Kopnov G, Karpovski M. Hall effect spintronics for gas detection. ApplPhys Lett 2017;111:143505.
[19] Lin WC, Wang BY, Huang HY, Tsai CJ, Mudinepalli VR. Hydrogen absorption-induced reversible change in magnetic properties of Co–Pd alloy films. J Alloys Comp 2016;661:20–26.
[20] Liang JY, Pai YC, Lam TN, Lin WC, Chan TS, Lai CH, et al. Using magnetic structure of Co40Pd60/Cu for the sensing of hydrogen. Appl Phys Lett 2017;111:023503.
[21] Chang CS, Kostylev M, Ivanov E. Metallic spintronic thin film as a hydrogen sensor. Appl PhysLett 2013;102:142405.
[22] Chang PC, Chen YC, Hsu CC, Chiu HC, Lin WC. Hydrogenation-induced reversible spin reorientation transition in Co50Pd50 alloy thin films. J Alloys Comp 2017;710:37–46.
[23]Admin(2017) What is Hysteresis loop? What is Hysteresis Loss?
[24]Tianlong Wen, Yuanpeng Li , Dainan Zhang , Qingfeng Zhan , Qiye Wen, Yulong Liao , Yali Xie , (2017)Huaiwu Zhang , Cheng Liu , Lichuan Jin , Yingli Liu , Tingchuan Zhou, Zhiyong Zhong. Manipulate the magnetic anisotropy of nanoparticle assemblies in arrays
[25] Delmelle, R., & Proost, J. (2011). An in situ study of the hydriding kinetics of Pd thin films.Physical Chemistry ChemicalPhysics,13(23), 11412.
[26] https://www.physik.uni-kl.de/hillebrands/research/methods/magneto-optic-kerr-effect-magnetometry-and-microscopy/
[27] Adam Brandow, Anton Geiler, Paul Head, Rui Loura, Heath Marvin, Michael Zartarian. Magneto-Optical Kerr Effect Microscope. Northeastern University
Electrical and Computer Engineering Department ECE U792 Capstone Design 2
[28] https://www.newport.com/p/NPC3SG
[29]https://www.newport.com/p/NPXYZ100SG?fbclid=IwAR2WV6d3Xe-zHnmADTAowN6QlHFKe2a2JBM0NZnlHUdgn_aMQAxusookTXc
[30] https://nano.biu.ac.il/AFM%20MultiMode%20V
[31] http://www.ma-tek.com/zh-tw/services/index/Pro_category_02/Pro_08
[32] https://www.microscopemaster.com/magnetic-force-microscopy.html
[33] Zlotea C, Ghimbeu CM, Oumellal Y, , Crivello JC, Vix-Guterl C, et al. Hydrogen sorption properties of Pd–Co nanoalloys embedded into mesoporous carbons. Nanoscale 2015;7:15469.
[34] Wen-Chin Lin, Po-Chun Chang, Yun-Ying Chang, Wei-Hsiang Wang, Fang-Yuh Lo. Visualizing hydrogen diffusion in magnetic film through magneto-optical Kerr effect.
[35]Teichmann N, Hamm M, Pundt A. Fast lateral hydrogen diffusion in magnesium-hydride films on sapphire substrates studied by electrochemical hydrogenography. InT J Hydrogen Energy 2018;43:1634–1642.