研究生: |
陳韋倫 Wei Lun Chen |
---|---|
論文名稱: |
脊髓小腦萎縮症第八型致病基因分析及建立脊髓小腦萎縮症第八型離體及活體模式 Analysis of spinocerebellar ataxia type 8 gene expression and establishment of spinocerebellar type 8 in vitro and in vivo models |
指導教授: |
謝秀梅
Hsieh, Hsiu-Mei |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 脊髓小腦萎縮症第八型 |
英文關鍵詞: | spinocerebellar type 8, nitroreductase, CB1954, in vitro, in vivo |
論文種類: | 學術論文 |
相關次數: | 點閱:247 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脊髓小腦萎縮症第八型是一種漸進性的神經退化疾病,其致病的原因是由於染色體13q21上的SCA8基因在3’不轉譯區的CTG三核甘酸不正常擴增所造成。目前對於此疾病的詳細致病機轉尚未了解,相關文獻指出SCA8基因並不具有轉譯的功能,而可能是扮演anti-sense RNA的調控功能,去影響對應股的KLHL1基因表現功能。我們首先利用了反轉錄聚合酶鏈鎖反應以及原位雜合兩種方法去分析SCA8及KLHL1在人類及老鼠組織特異性的表現情形。我們發現兩者高度地表現在脊髓小腦萎縮症第八型病患的臨床病徵相對應的腦部區域,正好呼應了先前研究對於兩個基因的anti-sense調控的假說。為了更進一步去了解SCA8致病的分子機制,我們因而建立了脊髓小腦萎縮症第八型基因的轉殖小鼠模式。我們利用原核胚顯微注射的方法,將人類SCA8基因帶有正常範圍(23)及致病範圍(157)兩種CTG擴增的基因片段,藉由NSE啟動子異位表現在小鼠的中樞神經系統,並進一步做行為以及組織切片的分析以了解CTG擴增對小鼠造成的影響。我們同時也將相同的基因架構轉殖進大鼠的嗜鉻細胞瘤細胞株,建立離體的模式;我們發現具有較長擴增片段的SCA8細胞株較正常範圍以及vector控制組更容易遭受到氧化壓力的影響。另外實驗室也已建立利用Purkinje專一表現之啟動子帶領nitroreductase基因之DNA片段誘導模式的基因轉殖鼠,nitroreductase可將prodrug CB1954轉化成有毒衍生物以專一性傷害小腦,因此可模擬類似小腦萎縮的病症;我們發現專一性破壞的小鼠在平衡功能產生缺失,免疫組織染色也發現purkinje 細胞缺失及高氧化壓力的訊號。利用這些轉殖鼠及細胞模式,我們已得到初步的一些資訊將有利於應用在相關疾病的基因及藥物治療研究。
Spinocerebellar ataxia type 8 (SCA8) was reported caused by an unstable CTG repeat expansion in the 3-untranslated region of SCA8 gene on chromosome 13q21. How the trinucleotide expansion causes the disease is not clear now. Some studies indicate that SCA8 might not encode protein and play an anti-sense regulatory role on the sense strand gene, KLHL1. We first identified the expression patterns of KLHL1 and SCA8 in both human and mouse brain tissues with RT-PCR and in-situ hybridization. The results show that the expression of sca8 in the brain regions whose functions correlate SCA8 clinical symptoms. The similar expression patterns of sca8 and klhl1 in these regions further suggest an anti-sense regulation of KLHL1 by SCA8. To further investigate the molecular mechanism of SCA8, a transgenic mouse model of SCA8 was established. The human SCA8 genes with 23 or 157 CTG repeats was in frame fused with flag-EGFP and driven by NSE promoter, which is considered as a CNS specific promoter. The founder lines were generated by pronuclear microinjection. Expressional, behavioral and histological analyses were preceded to understand the impact of the CTG repeat expansion on these mice. We also transfected the same constructs into rat pheochromocytoma (PC12) cell line to generate the in vitro model. We found that cell line with expanded 157 CTG repeats was more vulnerable under oxidative compared to cells with normal CTG expansion or vector construct-transfected. In addition to the SCA8 model, an inducible purkinje cells albation transgenic mouse model was also generated to further mimic SCA’s clinical features. We found that NTR transgenic mouse with CB1954 administration shows impairment in balance in motor coordination. Immunohistochemistry shows purkinje cells loss and higher oxidative signal. With the model, we have obtain initial effects resulted from overexpression of SCA8 in vivo and in vitro and late onset damage of cerebellum, which should further provide more information for the therapeutic study of SCA, including SCA8.
王淑明。(2004)。脊髓小腦運動失調症小鼠及purkinje 細胞模式之建立。台北醫學大學研究所碩士論文。
Baader SL, Schilling K. (1996). Glutamate receptors mediate dynamic regulation of nitric oxide synthase expression in cerebellar granule cells. J. Neurosci. 16(4):1440-9.
Berke SS, Schmied FF, Brunt E, Ellerby L, Paulson L. (2004). Caspase-mediated proteolysis of the polyglutamine disease protein ataxin-3. J.Neurochem. 89, 908–918.
Bowman AB, Yoo SY, Dantuma NP, Zoghbi HY. (2005). Neuronal
dysfunction in a polyglutamine disease model occurs in the absence of ubiquitin–proteasome system impairment and inversely correlates with the degree of nuclear inclusion formation. Hum. Mol. Genet.14(5) :679-691.
Cellini E, Nacmias B, Forleo P, Piacentini S, Guarnieri BM, Serio A, Calabro A, Renzi D, Sorbi S. (2001). Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Italy. Arch. Neurol. 58(11):1856-9
Chen S, Wu K, Zhang D, Sherman M, Knox R, Yang CS. (1999). Molecular characterization of binding of substrates and inhibitors to DT-diaphorase: combined approach involving site-directed mutagenesis, inhibitor-binding analysis, and computer modeling. Mol. Pharmacol. 56(2):272-8.
Clark AJ, Iwobi M, Cui W, Crompton M, Harold G, Hobbs S, Kamalati T, Knox R, Neil C, Yull F, Gusterson B. (1997). Selective cell ablation in transgenic mice expression E. coli nitroreductase. Gene Ther. 4(2):101-10.
Cormack BP, Valdivia RH, Falkow S. (1996). FACS-optimized mutants of the green fluorescent protein (GFP). Gene. 173(1 Spec No):33-8.
Cui W, Allen ND, Skynner M, Gusterson B, Clark AJ. (2001). Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia. 34(4):272-82.
Cui W, Gusterson B, Clark AJ. (1999). Nitroreductase-mediated cell ablation is very rapid and mediated by a p53-independent apoptotic pathway. Gene Ther. 6(5):764-70.
Day JW, Schut LJ, Moseley ML, Durand AC, Ranum LP. (2000). Spinocerebellar ataxia type 8: clinical features in a large family. Neurology. 55(5):649-57.
Del-Favero J, Krols L, Michalik A, Theuns J, Lofgren A, Goossens D, Wehnert A, Van den Bossche D, Van Zand K, Backhovens H, van Regenmorter N, Martin JJ, Van Broeckhoven C. (1998). Molecular genetic analysis of autosomal dominant cerebellar ataxia with retinal degeneration (ADCA type II) caused by CAG triplet repeat expansion. Hum. Mol. Genet. 7(2):177-86.
Douglas N.Robinson and Lynn Cooley. (1997). Drosophila kelch is an oligomeric ring canal actin organizer. J. Cell Biol. 138,799–810.
Dunn ME, Schilling K, Mugnaini E. (1998). Development and fine structure of murine Purkinje cells in dissociated cerebellar cultures: neuronal polarity. Anat. Embryol (Berl). 197(1):9-29.
Felmer R, Cui W, Clark AJ. (2002). Inducible ablation of adipocytes in adult transgenic mice expressing the E. coli nitroreductase gene. J. Endocrinol. 175(2):487-98.
Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert MF, Kaplan C, Ptacek LJ. (1996). Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am. J. Hum. Genet. 59:392–399
Giunti P, Stevanin G, Worth PF, David G, Brice A, Wood NW. (1999). Molecular and clinical study of 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. Am. J. Hum. Genet. 64:1594–1603
Goossens HH, Hoebeek FE, Van Alphen AM, Van Der Steen J, Stahl JS, De Zeeuw CI, Frens MA. (2004). Simple spike and complex spike activity of floccular Purkinje cells during the optokinetic reflex in mice lacking cerebellar long-term depression. Eur. J. Neurosci. 19(3):687-97.
Gross AJ, Michl UH, Bornhoft G, Dieckmann KP. (1993). Neuron-specific enolase: a serum tumor marker in renal cell carcinoma? Eur. Urol. 24(3):397-9.
Grove JI, Searle PF, Weedon SJ, Green NK, McNeish IA, Kerr DJ. (1999). Virus-directed enzyme prodrug therapy using CB1954. Anticancer Drug Des. 14(6):461-72
Harding AE .(1993). Clinical features and classification of inherited ataxias. Adv Neurol 61:1–14 (1982) The clinical features and classification of the late onset autosomal dominant cerebellar ataxias: a study of 11 families, including descendants of the Drew family of Walworth. Brain. 105:1–28
Hirokazu Furuya, Nobue Shinnoh, Yasumasa Ohyagi, Koji Ikezoe, Hitoshi Kikuchi, Manabu Osoegawa, Yasuyuki Fukumaki, Yusaku Nakabeppu, Toshimitsu Hayashi, Jun-ichi Kira. (2005). Some flavonoids and DHEA-S prevent the cis-effect of expanded CTG repeats in a stable PC12 cell transformant. Biochemical Pharmocol. 1;69(3):503-16.
Holmberg M, Duyckaerts C, Durr A, Cancel G, Gourfinkel-An I, Damier P, Faucheux B, Trottier Y, Hirsch EC, Agid Y, Brice A. (1998). Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum. Mol. Genet. 7(5):913-8.
Ikeda Y, Shizuka M, Watanabe M, Okamoto K, Shoji M. (2000). Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology. 54(4):950-5.
Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Webert C. (1996). Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat. Genet. 14:285–291
Isles AR, Ma D, Milsom C, Skynner MJ, Cui W, Clark J, Keverne EB, Allen ND. (2001). Conditional ablation of neurones in transgenic mice. Neurobiol. 47(3):183-93.
Juvonen V, Hietala M, Paivarinta M, Rantamaki M, Hakamies L, Kaakkola S, Vierimaa O, Penttinen M, Savontaus ML. (2000). Clinical and genetic findings in Finnish ataxia patients with the spinocerebellar ataxia 8 repeat expansion. Ann. Neurol. 48(3):354-61.
Kaomei Guan • Hong Chang • Alexandra Rolletschek Anna M. Wobus. (2001). Embryonic stem cell-derived neurogenesis. Retinoic acid induction and lineage selection of neuronal cells. Cell Tissue Res. 305:171–176.
Kawaguchi Y, Okamoto T, Taniwaki M, Aizwa M, Inoue M,Katayama S, Kawakami H .(1994). CAG expansions in a novel gene for Machado Joseph disease at chromosome 14q32.1. Nat. Genet. 8:221–228
Kellie A. Benzow, Michael D. Koob. (2002). The KLHL1-antisense transcript ( KLHL1AS) is evolutionarily conserved. Mammalian Genome. 13:134–141.
Knox RJ, Friedlos F, Boland MP.(1993). The bioactivation of CB 1954 and its use as a prodrug in antibody-directed enzyme prodrug therapy (ADEPT).Cancer Metastasis Rev. 12(2):195-212.
LaFevre-Bernt MA, Ellerby LM. (2003). Phosphorylation of the polyglutamine-expanded form of androgen receptor regulates its cleavage by caspase-3 and anhances cell death. J. Biol. Chem.278(37):34918-34924.
La Spada AR, Richards RI, Wieringa B.(2004). Dynamic mutation on the Banff. Nat. Genet. 36(7):667-670.
Lee YH, Lin CH, Hsu LW, Hu SY, Hsiao WT, Ho YS. (2003). Roles of ionotropic glutamate receptors in early developing neurons derived from the P19 mouse cell line. J. Biomed. Sci. 10(2):199-207.
Lehtinen M, Wigren T, Lehtinen T, Kallioniemi OP, Aine R, Aaran RK, Ojala A. (1988). Correlation between serum tumor marker levels and tumor proliferation in small cell lung cancer. Tumour Biol. 9(6):287-92.
Liour SS, Kapitonov D, Yu RK. (2000). Expression of gangliosides in neuronal development of P19 embryonal carcinoma stem cells. J. Neurosci. Res. 62(3):363-73.
Lovering AL, Hyde EI, Searle PF, White SA. (2001). The structure of Escherichia coli nitroreductase complexed with nicotinic acid: three crystal forms at 1.7 A, 1.8 A and 2.4 A resolution. J. Mol. Biol. 309(1):203-13.
Manto MU. (2005). The wide spectrum of spinocerebellar ataxias (SCAs).Cerebellum. 4(1):2-6. Review.
McBurney MW, Jones-Villeneuve EMW, Edwards MKS, Anderson PJ. (1982). Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature. 299:165–167.
Michael D. Koob, Melinda L. Moseley, Lawrence J. Schut1, Kellie A. Benzow, Thomas D. Bird,JohnW. Day & Laura P.W. Ranum. (1999). An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat. genet. 21:379-384.
Mohn AR, Feddersen RM, Nguyen MS, Koller BH. (1997). Phenotypic analysis of mice lacking the highly abundant Purkinje cell- and bipolar neuron-specific PCP2 protein. Mol. Cell Neurosci. 9(1):63-76.
Moseley ML, Schut LJ, Bird TD, Koob MD, Day JW, Ranum LP. (2000). SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum. Mol. Genet. 9(14):2125-30.
Mutsuddi M, Marshall CM, Benzow KA, Koob MD, Rebay I. (2004). The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila. Curr. Biol. 14(4):302-8.
Nagaoka U, Uchihara T, Iwabuchi K, Konno H, Tobita M, Funata N, Yagishita S, Kato T. (2003). Attenuated nuclear shrinkage in neurones with nuclear inclusions of SCA1 brains. J. Neurol Neurosurg Psychiatry 74:597–601.
Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I. (2001). SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum. Mol. Genet. 10(14):1441-8.
Nemes JP, Benzow KA, Moseley ML, Ranum LP, Koob MD. (2000). The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum. Mol. Genet. 9(10):1543-51.
Oberdick J, Levinthal F, Levinthal C. (1988). A Purkinje cell differentiation marker shows a partial DNA sequence homology to the cellular sis/PDGF2 gene. Neuron. 1: 367–376
Orr HT, Chung MY, Banfi S, Kwiatowski TJ Jr, Servadio A,Beaudet al, McCall AE, et al .(1993). Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat. Genet. 4:221–226
Osanai T, Watanabe Y, Sanai Y. (1997). Glycolipid sialyltransferases are enhanced during neural differentiation of mouse embryonic carcinoma cells, P19. Biochem. Biophys. Res. Commun. 241(2):327-33.
Paquin J, Danalache BA, Jankowski M, McCann SM, Gutkowska J.(2002).Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes. PNAS. 99(14):9550-5.
Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN,Lopes-Cendes I, Perlman S, et al . (1996). Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat. Genet. 14:269–276
Ranum LP, Schut LJ, Lundgren JK, Orr HT, Livingston DM. (1994). Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat. Genet. 8:280–284
Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, Wakisaka A. (1996). Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique. Nat. Genet. 14:277–284
Schilling K, Dickinson MH, Connor JA, Morgan JI. (1991). Electrical activity in cerebellar cultures determines Purkinje cell dendritic growth patterns. Neuron. 7(6):891-902.
Schmechel DE, Brightman MW, Barker JL. (1980a). Localization of neuron-specific enolase in mouse spinal neurons grown in tissue culture. Brain Res. 181(2):391-400.
Schmechel DE, Brightman MW, Marangos PJ. (1980b). Neurons switch from non-neuronal enolase to neuron-specific enolase during differentiation. Brain Res. 190(1):195-214.
Schols L, Bauer I, Zuhlke C, Schulte T, Kolmel C, Burk K, Topka H, Bauer P, Przuntek H, Riess O. (2003). Do CTG expansions at the SCA8 locus cause ataxia? Ann. Neurol. 254(1):110-5.
Schols L, Szymanski S, Peters S, Przuntek H, Epplen JT, Hardt C, Riess O. (2000). Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum. Genet. 107(2):132-7.
Silveira I, Alonso I, Guimaraes L, Mendonca P, Santos C, Maciel P, Fidalgo De Matos JM, Costa M, Barbot C, Tuna A, Barros J, Jardim L, Coutinho P, Sequeiros J. (2000). High germinal instability of the (CTG)n at the SCA8 locus of both expanded and normal alleles. Am. J. Hum. Genet. 66(3):830-40.
Skerjanc IS. (1999). Cardiac and skeletal muscle development in P19 embryonal carcinoma cells. Trends Cardiovasc Med. 9(5):139-43.
Smeyne RJ, Chu T, Lewin A, Bian F, S-Crisman S, Kunsch C, Lira SA, Oberdick J. (1995). Local control of granule cell generation by cerebellar Purkinje cells. Mol. Cell Neurosci. 6(3):230-51.
Sonneveld E, van den Brink CE, Tertoolen LG, van der Burg B, van der Saag PT. (1999). Retinoic acid hydroxylase (CYP26) is a key enzyme in neuronal differentiation of embryonal carcinoma cells. Dev. Biol. 213(2):390-404.
Srivastava D, Olson EN. (2000). A genetic blueprint for cardiac development. Nature. 407(6801):221-6.
Tazon B, Badenas C, Jimenez L, Munoz E, Mila M.(2002).SCA8 in the Spanish population including one homozygous patient. Clin. Genet. 62(5):404-9.
Tomomura M, Rice DS, Morgan JI, Yuzaki M. (2001). Purification of Purkinje cells by fluorescence-activated cell sorting from transgenic mice that express green fluorescent protein. Eur. J. Neurosci. 14(1):57-63.
Topisirovic I, Dragasevic N, Savic D, Ristic A, Keckarevic M, Keckarevic D, Culjkovic B, Petrovic I, Romac S, Kostic VS. (2002). Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Yugoslavia. Clin. Genet. 62(4):321-4.
Tsai HF, Liu CS, Leu TM, Wen FC, Lin SJ, Liu CC, Yang DK, Li C, Hsieh M. (2004). Analysis of trinucleotide repeats in different SCA loci in spinocerebellar ataxia patients and in normal population of Taiwan. Acta. Neurol. Scand. 109(5):355-60.
Vandaele S, Nordquist DT, Feddersen RM, Tretjakoff I, Peterson AC, Orr HT. (1991). Purkinje cell protein-2 regulatory regions and transgene expression in cerebellar compartments. Genes Dev. 5(7):1136-48.
Wang HL, Yeh TH, Chou AS, Kuo YL, Luo LJ, He CY, Huang PC, Li AH.(2005). Polyglutamine-expanded ataxin-7 activates mitochondrial apoptotic pathway of cerebellar neurons by upregulating Bax and downregulating Bcl-xL. Cellular Signaling. 18(4):541-52.
Wibe E, Hannisdal E, Paus E, Aamdal S. (1992). Neuron-specific enolase as a prognostic factor in metastatic malignant melanoma. Eur. J. Cancer. 28A(10):1692-5.
Worth PF, Giunti P, Gardner-Thorpe C, Dixon PH, Davis MB, Wood NW. (1999). Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. Am. J. Hum. Genet. 65(2):420-6.
Wu YR, Lin HY, Chen CM, Gwinn-Hardy K, Ro LS, Wang YC, Li SH, Hwang JC, Fang K, Hsieh-Li HM, Li ML, Tung LC, Su MT, Lu KT, Lee-Chen GJ. (2004). Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson's disease. Clin. Genet. 65(3):209-14.
Zeman A, Stone J, Porteous M, Burns E, Barron L, Warner J. (2004). Spinocerebellar ataxia type 8 in Scotland: genetic and clinical features in seven unrelated cases and a review of published reports. J. Neurol Neurosurg Psychiatry. 75(3):459-65. Review.
Zhang X, Zhang H, Oberdick J. (2002). Conservation of the developmentally regulated dendritic localization of a Purkinje cell-specific mRNA that encodes a G-protein modulator: comparison of rodent and human Pcp2(L7) gene structure and expression. Brain Res. Mol. Brain. Res. 105(1-2):1-10.
Zhuchenko O, Baily J, Bonnene P, Ashizawa T, Stockton D, Amos C, Dobyns WB. (1997). Autosomal dominant cerebellar ataxia (SCA6)associated with small polyglutamine expansions in the a1A voltage-dependent calcium channel. Nat. Genet. 15:62–69.