研究生: |
吳佳蓮 Chai-Lien Wu |
---|---|
論文名稱: |
科學探究活動中國小五年級學童科學解釋能力及認識論之研究 Exploring the Development of Fifth-Grade Students’ Explanation Skills and Their Scientific Epistemologies in Inquiry-Based Activities |
指導教授: |
吳心楷
Wu, Hsin-Kai |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 171 |
中文關鍵詞: | 認識論 、科學解釋 、科學探究 |
英文關鍵詞: | Scientific Epistemology, Scientific Explanation, Inquiry |
論文種類: | 學術論文 |
相關次數: | 點閱:245 下載:173 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的是要探討國小五年級學生在科學探究活動中,科學解釋能力的成長情形,分析學生在科學探究活動中所呈現的科學認識論,進而討論學生在進行探究活動中學生所持有的認識論和解釋能力間的關係。本研究之對象為兩班共69名五年級學生,在五週期間,收集晤談、問卷、教室觀察等多項量化與質性資料,所針對的三項科學解釋能力為:指出變數間的關係、產生解釋的推理過程、提出證據支持主張,而科學認識論是指學生對於科學探究和科學知識的本質的想法,其中分為實務認識論和形式認識論兩部分。資料分析結果顯示,在經過探究活動後,學生產生解釋的推理過程的能力成長趨勢最為明顯,指出變數間關係的能力為次之,提出證據支持主張的能力成長趨勢為最小。學生的形式認識論較偏向於建構主義的認識論;而在實務認識論方面,二十三位焦點學生中,只有九位學生所持有的實務認識論為實徵主義的認識論,其他學生的實務認識論皆是同時混合實徵與建構主義的認識論。在科學解釋能力與認識論的關係方面,形式認識論為建構主義認識論傾向的學生具有較高的解釋能力,而學生的實務認識論若為混合認識論則指出變數間的關係、產生解釋的推理過程的能力和提出證據支持主張的進步較實徵主義觀點的學生為大。另外,根據教室活動的分析發現學生指出變數間的關係、產生解釋的推理過程和提出證據支持主張的能力和他們所呈現的實務認識論有相關性。
The purpose of the study is to develop students’ explanation skills, explore their scientific epistemologies, and investigate the relationships between students’ explanation skills and scientific epistemologies in inquiry-based learning environment. This study focuses on three explanation skills: “identifying the relationships of variables,” “describing a reasoning process for constructing scientific explanations,” and “using data as evidence,” and scientific epistemologies in this study refer to students’ beliefs about the nature of science (formal epistemology) and their practices of inquiry (practical epistemology). After analyzing quantitative and qualitative data collected from 69 fifth graders in two science classes, the results show that the skill in “describing a reasoning process for constructing scientific explanation” could be more easily developed, and the improvement of skill in “using data as evidence” was the least. The statistical results from a formal epistemology questionnaire show that all students held constructivist epistemological beliefs. However, the findings from practical epistemology interviews and video recordings of inquiry activities reveal that 9 of 23 focus students had empiricist epistemological beliefs, while the others held mixed epistemological beliefs, including both empiricist epistemological beliefs and constructivist epistemological beliefs. In addition, the results of multiple data analyses suggest that students holding mixed epistemological beliefs tended to develop scientific explanation skills more easily than those holding empiricist epistemological beliefs. And according to video recordings of inquiry activities, the development of students’ explanation skills were related to their epistemological beliefs.
參考文獻
一、中文部份
毛松霖(1990)。解釋資料與形成假設及認知發展層次間相互關係測試工具之發展研究。第五屆科學教育學術研討會論文彙刊。
李悅美(2001)。國民小學高年級學童科學本質觀之研究。台北市立師範學院科學教育研究所自然科學教學碩士學位論文。
林陳涌(1996)。「了解科學本質量表」之發展與效化。科學教育學刊,4(1),1-58。
張淑女(2004)。從認識論的觀點探究大學生論證思考之能力與模式。台灣師範大學科學,教育科學教育研究所博士論文。
黃俊偉(2004)。國小五年級學生科學本質觀與科學家形象之研究。國立屏東師範學院數理教育研究所碩士論文
黃達三(1998)。國小教師於科學教育的口語解釋研究。科學教育學刊,6(3),285-302。
陸健體(1994)。關於世界的問答-科學說明。台北:淑馨出版社。
翁秀玉、段曉林(1997)。科學本質在科學教育上的啟示與作法。科學教育月刊, 201,2-15。
侯香伶(2002)。科學探究活動中的科學本質面貌對國一生科學本質觀的影響。國立彰化師範大學科學教育研究所碩士論文。
陳映辛(2004)。探究式實驗對高中生科學本質觀變化之探討。國立高雄師範大學科學教育研究所碩士論文。
舒煒光、邱仁宗(民79)。當代西方科學哲學述評。台北:水牛。
謝州恩、吳心楷(2005)。探究情境中國小學童科學解釋能力成長之研究。師大學報,50(2),55-84。
二、西文部份
Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397 - 419.
Abd-El-Khalick, F., & Lederman, N. G., (2000). Improving science teachers’ conceptions of nature of science:a critical review of the literature. International Journal of Science Education, 22(7), 665-701.
American Association for the Advancement of Science. (1989). Project 2061: Science for all Americans. Washington, D.C.
American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York: Oxford University Press.
Champagne, A. B., Gunstone, R. F. and Klopfer, L. E. (1985) Effecting changes in cognitive structures among physics students in Cognitive Structure and Conceptual Change. West L. and Pines A. (Eds.). Academic Press
Colburn, A. (2000). An inquiry primer. Science Scope, 23(6), 42-44.
Collette A. T. & Chiappetta E. L. (1989, 1994). Science Instruction in the Middle and Secondary School. Columbus, Ohio, Merrill Publishing Company.
Corbin, J. M., & Strauss, A. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory. Sage: Thousand Oaks, CA.
Creswell, J. W. (1994). Research design: Qualitative and quantitative approaches. Thousand Oaks, CA: Sage.
Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people's images of science. Milton Keynes, UK: Open University Press.
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287–312.
Edgington, J. R. (1997). What constitutes a scientific explanation? Paper presented at the annual meeting of the National Association for Research in Science Teaching, Oak Brook, IL.
Erickson, F. (1998). Qualitative research methods for science education. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 1155-1173). Great Britain: Kluwer Academic Publishers
Gotwals, A. W., & Songer, N. B. (2005). The symbiosis of cognition, observation, and interpretation in an assessment system for biokids. Paper presented at the American Education Research Association annual meeting.
Hammer, D., & Elby, A. (2003). Tapping epistemological resources for learning physics. Journal of the Learning Sciences, 12(1), 53-90.
Harrarinen, K. (2004). Pursuit of explanation within a computer-supported classroom. International Journal of Science Education, 26(8), 979–996.
Hofstein, A., Navon, O., Kipnis, M., & Mamlok-Naaman, R. (2005). Developing students' ability to ask more and better questions resulting from inquiry-type chemistry laboratories. Journal for Research in Science Teaching, 0, 1-16.
Hogan, K. (2000). Exploring a process view of students’knowledge about the nature of science. Sicence Education, 84(1), 51-70.
Hogan, K., & Maglienti, M. (2001). Comparing the epistemological underpinnings of students' and scientists' reasoning about conclusions. Journal of Research in Science Teaching, 38(6), 663-687.
Khishfe, R. & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders' views of nature of science. Journal of Research in Science Teaching, 39, 551–578.
Krajcik, J. S., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3&4), 313-350.
Krajcik, J. S., Czerniak, C. M., & Berger, C. (1999). Teaching children science: A project-based approach. Boston, MA: McGraw-Hill College.
Kuhn, D., Amsel, E., & O'Loughlin, M. (1988). The development of scientific thinking skills. New York: Academic Press.
Kuhn, L., & Reiser, B. (2004). Students constructing and defending evidence-based scientific explanations. Paper presented at the annual meeting of the National Association for Research in Science Teaching, Dallax, TX.
Lederman, N. G. (1992). Students' and teachers' conceptions about the nature of science: A review of the research. Journal of Research in