簡易檢索 / 詳目顯示

研究生: Pham Thi Huong
Pham Thi Huong
論文名稱: 應力場變化對於三維裂隙系統演化的影響:以台灣東北部為例
Influences of stress variation on the evolution of 3D fracture system: An example in NE Taiwan
指導教授: 葉恩肇
Yeh, En-Chao
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 129
中文關鍵詞: 裂隙不安定性分析三維裂隙製圖應力逆推分析
英文關鍵詞: Fractures Instability Analysis, 3D Fracture Mapping, Stress Inversion Analysis
DOI URL: http://doi.org/10.6345/NTNU202001580
論文種類: 學術論文
相關次數: 點閱:86下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • When nucleation of fractures and reactivation of pre-existing fractures was supposedly triggered by earthquake events, the stress state characterized by the focal mechanism of earthquake events can manipulate the 3D fracture patterns. That 3D fracture pattern might present the distribution, density variation, and connectivity of the fracture system in spatial always received special attention from geologists for the considerations regarding the mining and exploration development, disaster forecasting, and even the evolution of mountain building processes.
    Northeast Taiwan provided a special opportunity to understand the evolution of stress state from compressive subduction at the south to back-arc extension at north in the northeastern part of this active orogenic belt. The stress state in cross-section generated by inverted the focal mechanism data, which was collected from 1991 to 2016. The certain stress regime of Northeast Taiwan primarily changes from reverse faulting at the south to strike-slip faulting at the north, which approximately conducts the transformation of the orientation of the nucleated fractures network system. Even the presence of different in-situ stress regimes can cause reactivation of pre-existing in later. This region basically provides to the important situation to evaluate the evolution of fracture patterns with the stress field, contemporaneously. Therefore, our study aims to seeking, identifying, investigating the geometric characteristics of fracture planes of NE Taiwan by analyzing Digital Elevation Models (DEM). From DEM, the recent development of GIS and remote sensing technology can support to access and collect data of the fracture system in the inaccessible region.
    Our results show that in three domains, we recognized 187 surface fractures by applied the cross-cutting relationship between foliation and fracture planes and also calculated the fracture attitudes. In general, the spatial distribution of mean striking of fracture plane changed from N-S in the Domain III via NE-SW in the Domain II to ENE-WSW orientation in the Domain I. However, to get better results, only 120 fractures planes with R2 ≥ 0.85 and length ≥ 1000 meters are compatible to predicted fractures generated from focal mechanism analysis. After evaluating the fracture instabilities, we realized that nucleated surface fractures in DEM could be correlated with the applied stress field in the evolution of the tectonic setting from the south to the north along the coastline area at NE Taiwan. The number of nucleated surface fractures of Domain I is highest (64%) in comparison with other domains. Additionally, we examine the slip tendency analysis to measure the reactivation of nucleated surface fracture. The results confirmed the important roles of the extensional force of back-arc Okinawa Trough opening to the reactivated fracture in NE Taiwan. The examination result of slip tendency presented 54% nucleated fracture planes of Domain I could be reactivated under the stress state. Therefore, mapping and classifying fracture planes provided valuable information to the 3D fracture map, which should be able to further implication in terms of the landslide, groundwater, and scientific research issues.

    CONTENT ACKNOWLEDGEMENTS i ABSTRACT ii CONTENT iv LIST OF TABLES vii LIST OF ABBREVIATIONS viii LIST OF FIGURES ix CHAPTER 1: INTRODUCTION 1 1.1 Motivation 1 1.1.1 Tectonics of NE Taiwan 1 1.1.2 The model of fracture development at coastline area in NE Taiwan 5 1.1.3 The reliability of digital elevation data in the geological examination 7 1.2 Purposes 8 CHAPTER 2: GEOLOGICAL BACKGROUND 9 2.1 Tectonic setting 9 2.1.1 Taiwan mountain belt 9 2.1.2 Kinematics in NE Taiwan 12 2.2 Geological Background 16 2.2.1 Pre-Tertiary metamorphic rock 19 2.2.2 Tertiary metamorphic rock and sediment deposit 20 CHAPTER 3: METHODOLOGY 21 3.1 Geological definitions. 22 3.1.1 Foliation 22 3.1.2 Fracture 22 3.1.3 Stress tensor 23 3.2 Methods 23 3.2.1 DEM Database 23 3.2.2 Red Relief Image Model (RRIM) 24 3.2.3 Lineament Map 29 3.2.4 Extraction of Fracture Attitude 30 3.2.5 Stress Inversion and Instability Analysis 34 CHAPTER 4: RESULTS 39 4.1 Identification of fracture and foliation 39 4.1.1 Attitude of foliation planes 39 4.1.2 Fracture plane mapping 51 4.2 Analysis result of focal mechanism data 61 4.2.1 Distribution of focal mechanism. 61 4.2.2 Stress inversion 65 4.3 Fracture Instability 70 4.3.1 Threshold value of fault instabilities 70 4.3.2 Evolution of fracture system in NE Taiwan 76 CHAPTER 5: DISCUSSIONS 79 5.1 Mapping limitations of DEM in metamorphic area 80 5.2 Stress inversion results and stress evolution path in NE Taiwan 83 5.3 Spatial distribution of surface fractures 86 5.4 Evaluation of reactivated fractures in NE Taiwan 91 5.4.1 Slip tendency analysis 92 5.4.2 The reactivated fractures in the tectonic evolution scenery 96 CHAPTER 6: CONCLUSIONS 101 REFERENCES 103 Appendix A Surface fractures orientation of domain I 112 Appendix B Surface fractures orientation of domain II 113 Appendix C Surface fractures orientation of domain III 115 Appendix D Related parameters of surface fractures at domain I 117 Appendix E Related parameters of surface fractures at domain II 118 Appendix F Related parameters of surface fractures at domain III 120 Summary of questions/answers and suggestions 123

    REFERENCES
    Angelier, J., Bergerat, F., Chu, H.T., & Lee, T.Q. (1990). Tectonic analysis and the evolution of a curved collision belt: the Hsüehshan Range, northern Taiwan. Tectonophysics, 183(1-4), 77-96.
    Arrowsmith, J. R., & Zielke, O. (2009). Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: An example from the Cholame segment. Geomorphology, 113(1-2), 70-81.
    Beeler, N. M., Simpson, R. W., Hickman, S. H., & Lockner, D. A. (2000). Pore fluid pressure, apparent friction, and Coulomb failure. Journal of Geophysical Research: Solid Earth, 105(B11), 25533-25542.
    Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological Magazine, 96(2), 109-117.
    Campagna, D., & Levandowski, D. (1991). The recognition of strike-slip fault systems using imagery, gravity, and topographic data sets. Photogrammetric Engineering and Remote Sensing, 57(9), 1195-1201.
    Chen, K. H., Toda, S., & Rau, R. J. (2008). A leaping, triggered sequence along a segmented fault: The 1951 ML 7.3 Hualien‐Taitung earthquake sequence in eastern Taiwan. Journal of Geophysical Research: Solid Earth, 113(B2).
    Chen, W. S., Huang, Y. C., Liu, C. H., Feng, H. T., Chung, S. L., & Lee, Y. H. (2016). UPb zircon geochronology constraints on the ages of the Tananao Schist Belt and timing of orogenic events in Taiwan: Implications for a new tectonic evolution of the South China Block during the Mesozoic. Tectonophysics, 686, 68-81.
    Chen, X., & Wang, J. (2014). A comparison of two-fluid model, dense discrete particle model and CFD-DEM method for modeling impinging gas-solid flows. Powder Technology, 254, 94-102.
    Chen, Y. F., Hu, S. H., Hu, R., & Zhou, C. B. (2015). Estimating hydraulic conductivity of fractured rocks from high‐pressure packer tests with an Izbash's law‐based empirical model. Water Resources Research, 51(4), 2096-2118.
    Chi, W. R., Namson, J., & Suppe, J. (1981). Stratigraphic record of plate interactions in the Coastal Range of eastern Taiwan. Memoir of the Geological Society of China, 4, 155-194.
    Chiang, S.C. (1976), Seismic study in the Ilan Plain [in Chinese], Mining Technology, 14(6), 215-221.
    Chiba, T., Kaneta, S. I., & Suzuki, Y. (2008). Red relief image map: new visualization method for three-dimensional data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B2), 1071-1076.
    Chiba, T., & Hasi, B. (2016). Ground surface visualization using red relief image map for a variety of map scales. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B2, 393-397.
    Chou, C. C., & Chen, Y. C. (2012). Development and seismic performance of steel dual-core self-centering braces. In 15th world conference on Earthquake Engineering, 24-28.
    Clift, P.D., Lin, A.T., Carter, A., Wu, F., Draut, A.E., Lai, T.-H., Fei, L.-Y., Schouten, H., & Teng, L., (2008). Post-collisional collapse in the wake of migrating arc-continent collision in the Ilan Basin, Taiwan. Special Papers Geological Society Of America, 436, 257-278.
    Cracknell, M. J., Reading, A. M., & McNeill, A. W. (2014). Mapping geology and volcanic-hosted massive sulfide alteration in the Hellyer–Mt Charter region, Tasmania, using Random Forests™ and Self-Organising Maps. Australian Journal of Earth Sciences, 61(2), 287-304.
    Delaney, P. T., Pollard, D. D., Ziony, J. I., & McKee, E. H. (1986). Field relations between dikes and joints: emplacement processes and paleostress analysis. Journal of Geophysical Research: Solid Earth, 91(B5), 4920-4938.
    Ernst, W. G. (1983). Mineral parageneses in metamorphic rocks exposed along Tailuko Gorge, central mountain range, Taiwan. Journal of Metamorphic Geology, 1(4), 305-329.
    Ferrill, D. A., Winterle, J., Wittmeyer, G., Sims, D., Colton, S., Armstrong, A., & Morris, A. P. (1999). Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today, 9(5), 1-8.
    Florinsky, I. (2016). Digital terrain analysis in soil science and geology. Academic Press.
    Fossen, H. (2016). Structural geology. Cambridge University Press.
    Fuh, T. M. (1962). Metamorphic rocks of the Nanao district, Taiwan, with special reference to the origin of orthogneiss. Memoir of the Geological Society of China, 1, 113-132.
    Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1-3), 1-16.
    Ho, C. S. (1988). An introduction to the geology of Taiwan, explanatory text of the geologic map of Taiwan. Central Geological Survey.
    Hobbs, W. H. (1904). Lineaments of the Atlantic border region. Bulletin of the Geological Society of America, 15(1), 483-506.
    Hsu, W. H., Byrne, T. B., Ouimet, W., Lee, Y. H., Chen, Y. G., Soest, M. V., & Hodges, K. (2016). Pleistocene onset of rapid, punctuated exhumation in the eastern Central Range of the Taiwan orogenic belt. Geology, 44(9), 719-722.
    Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., & Chen, H. Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1-2), 4-18.
    Huang, H. H., Shyu, J. B. H., Wu, Y. M., Chang, C. H., & Chen, Y. G. (2012). Seismotectonics of northeastern Taiwan: kinematics of the transition from waning collision to subduction and postcollisional extension. Journal of Geophysical Research: Solid Earth, 117(B01313).
    Kang, C.C., Chang, C.P., Siame, L., Lee, J.C. (2015). Present-day surface deformation and tectonic insights of the extensional Ilan Plain, NE Taiwan. Journal of Asian Earth Science,105, 408-417.
    Ku, C.Y., Hsu, S.K., Sibuet, J. C., & Tsai, C.H. (2009). The neo-tectonic structure of the south western tip of the Okinawa Trough. Terrestrial Atmospheric and Oceanic Sciences, 20(5), 7.
    Kukowski, N., Schillhorn, T., Huhn, K., von Rad, U., Husen, S., & Flueh, E. R. (2001). Morphotectonics and mechanics of the central Makran accretionary wedge off Pakistan. Marine Geology, 173(1-4), 1-19.
    Kukowski, N., Hampel, A., Hoth, S., & Bialas, J. (2008). Morphotectonic and morphometric analysis of the Nazca plate and the adjacent offshore Peruvian continental slope-Implications for submarine landscape evolution. Marine Geology, 254(1-2), 107-120.
    Lai, K. Y., Chen, Y. G., Wu, Y. M., Avouac, J. P., Kuo, Y. T., Wang, Y., Lin, K. C. (2009). The 2005 Ilan earthquake doublet and seismic crisis in northeastern Taiwan: evidence for dyke intrusion associated with on-land propagation of the Okinawa Trough. Geophysical Journal International, 179(2), 678-686.
    Lallemand, S., & Liu, C. S. (1998). Geodynamic implications of present-day kinematics in the southern Ryukyus. Journal of the Geological Society of China, 41, 551-564.
    Lattman, L. H. (1958). Technique of mapping geologic fracture traces and lineaments on aerial photographs. Photogrammetric Engineering, 24(4), 568-576.
    Lee, C. S., Shor, G. G. Jr., Bibee, L. D., Lu, R. S., and Hilde, T. W. C. (1980). Okinawa Trough: Origin of a back-arc basin. Marine Geology, 35, 219-241.
    Lee, C. T., & Wang, Y., (1988). Quaternary stress changes in northern Taiwan and their tectonic significance, Geological Society of China Proceedings, 31, 154-168.
    Lin, C. W., Shieh, C. L., Yuan, B. D., Shieh, Y. C., Liu, S. H., & Lee, S. Y. (2004). Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan. Engineering geology, 71(1-2), 49-61.
    Lisle, R. J., & Srivastava, D. C. (2004). Test of the frictional reactivation theory for faults and validity of fault-slip analysis. Geology, 32(7), 569-572.
    Liu, T. K. (1982). Tectonic implication of fission track ages from the Central Range, Taiwan: Proceeding of the Geological Society of China, 25, 23-37.
    Liu, T. K., Hsieh, S., Chen, Y. G., & Chen, W. S. (2001). Thermo-kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating. Earth and Planetary Science Letters, 186(1), 45-56.
    Malavieille, J., Dominguez, S., Lu, C. Y., Chen, C. T., & Konstantinovskaya, E. (2019). Deformation partitioning in mountain belts: insights from analogue modelling experiments and the Taiwan collisional orogen. Geological Magazine, 1-20.
    Masoud, A. A., & Koike, K. (2011a). Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), 818-832.
    Masoud, A. A., & Koike, K. (2011b). Morphotectonics inferred from the analysis of topographic lineaments auto-detected from DEMs: Application and validation for the Sinai Peninsula, Egypt. Tectonophysics, 510(3-4), 291-308.
    Morelli, M., & Piana, F. (2006). Comparison between remote sensed lineaments and geological structures in intensively cultivated hills (Monferrato and Langhe domains, NW Italy). International Journal of Remote Sensing, 27(20), 4471-4493.
    Morris, A., Ferrill, D. A., & Henderson, D. B. (1996). Slip-tendency analysis and fault reactivation. Geology, 24(3), 275-278.
    Morris, A., & Ferrill, D. A. (2009). The importance of the effective intermediate principal stress (σ2) to fault slip patterns. Journal of Structural Geology, 31(9), 950-959.
    Nakamura, M. (2004). Crustal deformation in the central and southern Ryukyu Arc estimated from GPS data. Earth and Planetary Science Letters, 217(3-4), 389-398.
    Nishimura, S., Hashimoto, M., & Ando, M. (2004). A rigid block rotation model for the GPS derived velocity field along the Ryukyu arc. Physics of the Earth and Planetary Interiors, 142(3-4), 185-203.
    Peacock, D. C. P., Nixon, C. W., Rotevatn, A., Sanderson, D. J., & Zuluaga, L. F. (2016). Glossary of fault and other fracture networks. Journal of Structural Geology, 92, 12-29.
    Pollard, D. D., & Aydin, A. (1988). Progress in understanding jointing over the past century. Geological Society of America Bulletin, 100
    Rateb, A., Ching, K. E., Kuo, C. Y., Rau, R. J., & Chen, C. L. (2017). Kinematics of the tectonic blocks and active faults at the post-orogenic stage: Northern Taiwan. Journal of Asian Earth Sciences, 149, 29-40.
    Sauber, J. M., & Molnia, B. F. (2004). Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska. Global and Planetary Change, 42(1-4), 279-293.
    Scholz, C. H. (2002). The mechanics of Earthquakes and faulting, Cambridge University Press.
    Schultz, R. A., & Fossen, H. (2008). Terminology for structural discontinuities. AAPG bulletin, 92(7), 853-867.
    Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110(B8).
    Sibuet, J. C., Letouzey, J., Barbier, F., Charvet, J., Foucher, J. P., Hilde, T. W., Kimura, M., Chiao, L.V., Marsset, B., Muller, C., & Stéphan, J. F. (1987). Back arc extension in the Okinawa Trough. Journal of Geophysical Research: Solid Earth, 92(B13), 14041-14063.
    Sibuet, J. C., & Hsu, S. K. (1997). Geodynamics of the Taiwan arc-arc collision. Tectonophysics, 274(1-3), 221-251.
    Stanley, R. S., Hill, L. B., Chang, H. C., & Hu, H. N. (1981). A transect through the metamorphic core of the Central Mountains, southern Taiwan. Memoir of the Geological Society of China, 4, 443-473.
    Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China, 4, 67-89.
    Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan. Memoir of the Geological Society of China, 6, 21-33.
    Sutinen, R., Piekkari, M., & Middleton, M. (2009). Glacial geomorphology in Utsjoki, Finnish Lapland proposes Younger Dryas fault-instability. Global and Planetary Change, 69(1-2), 16-28.
    Tarolli, P., & Fontana, G. (2009). Hillslope-to-valley transition morphology: New opportunities from high resolution DTMs. Geomorphology, 113(1-2), 47-56.
    Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76.
    Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10), 949-952.
    Teng, L. S., Lee, C. T., Tsai, Y. B., & Hsiao, L. Y. (2000). Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan. Geology, 28(2), 155-158.
    Twidale, C. R., Bourne, J. A., Spooner, N. A., & Rhodes, E. J. (2007). The age of the palaeodunefield of the northern Murray Basin in South Australia: Preliminary results. Quaternary International, 166(1), 42-48.
    Vavryčuk, V., Beer, M., Kougioumtzoglou, I., Patelli, E., & Au, I. K. (2015). Earthquake mechanisms and stress field. Encyclopedia of earthquake engineering, 728-746.
    Vinogradova, A. I., & Eremin, V. K. (Eds.). (1971). Aerial methods for geological investigations Leningrad: Nedra (in Russian).
    Wallace, R. E. (1951). Geometry of shearing stress and relation to faulting. The Journal of geology, 59(2), 118-130.
    Wang, Y. U. A. N. (1966). Some geologic observations in the Coastal Range, eastern Taiwan. Proceeding of the Geological Society of China, 9, 86-93.
    Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.
    Wilson, J. T. (1941). Structural features in the Northwest Territories. American Journal of Science, 239(7), 493-502.
    Wise, D.U., Grady, L.T., & Salvini, F. (1985). Topographic lineament domains of the Appalachians- Some new methods and techniques for paleostress analysis. In 1985 International Geoscience and Remote Sensing Symposium (IGARSS'85), Amherst, MA, 125-130.
    Wladis, D. (1999). Automatic lineament detection using digital elevation models with second derivative filters. Photogrammetric engineering and remote sensing, 65, 453-458.
    Wu, F. T. (1978). Recent tectonics of Taiwan. Journal of Physics of the Earth, 26 (Supplement), S265-S299.
    Wu, F. T., Liang, W. T., Lee, J. C., Benz, H., & Villasenor, A. (2009). A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries. Journal of Geophysical Research: Solid Earth, 114(B7).
    Wu, W. N., Kao, H., Hsu, S. K., Lo, C. L., & Chen, H. W. (2010). Spatial variation of the crustal stress field along the Ryukyu‐Taiwan‐Luzon convergent boundary. Journal of Geophysical Research: Solid Earth, 115(B11).
    Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., & Avouac, J. P. (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. Journal of Geophysical Research: Solid Earth, 112(B8).
    Wu, Y.M., Zhao, L., Chang, C.H., & Hsu, Y.J. (2008). Focal-mechanism determination in Taiwan by genetic algorithm. Bulletin of the Seismological Society of America, 98(2), 651-661.
    Yeh, C. H., Chen, Y.C., Chang, K.J., Lin, M.L., & Hsieh, Y.C. (2014). Derivation of strike and dip in sedimentary terrain using 3D image interpretation based on airborne LiDAR data. Terrestrial, Atmospheric and Oceanic Sciences, 25(6), 775.
    Yen, T. P. (1954). The gneisses of Taiwan. Bulletin Geological Survey, 5, 1-100.
    Yokoyama, R., Shirasawa, M., & Pike, R.J. (2002). Visualizing topography by openness: a new application of image processing to digital elevation models. Photogrammetric engineering and remote sensing, 68(3), 257-266.
    Yu, S.B., Kuo, L.C., Punongbayan, R.S., & Ramos, E.G. (1999). GPS observation of crustal deformation in the Taiwan‐Luzon region. Geophysical Research Letters, 26(7), 923-926.

    下載圖示
    QR CODE