簡易檢索 / 詳目顯示

研究生: 陳俊諭
Chen, Jun-Yu
論文名稱: 長程序交互作用玻色原子團的能隙孤粒子
Gap Solitons in an Ultracold Bose Gas with Long-Range Interaction
指導教授: 吳文欽
Wu, Wen-Chin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 54
中文關鍵詞: 玻色-愛因斯坦凝聚雷德堡綴飾原子超固態能隙孤粒子
英文關鍵詞: Bose-Einstein condensation, Rydberg-dressed atoms, supersolid, gap solitons
論文種類: 學術論文
相關次數: 點閱:121下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究雷德堡綴飾玻色原子團 (Rydberg-dressed atoms)置放入一維光晶格 (optical lattice) 中,在原子長距離交互作用半徑 (blocade radius) $ r_{c} $ 和單位晶格長度(lattice constant) $ d $這兩種距離尺度競爭下,可能得到分數型(fractionally modulated supersolid state)分布的超固態和對應的基本能隙孤粒子(fundamental gap solitons)。研究發現這個長程序作用力系統具有短程序作用力系統很不同的孤粒子行為,例如:多變分數型態的波型及具有可能的量子震盪行為。

    Ch1 Introduction 1 1.1 Gross–Pitaevskii equation 2 1.2 Elementary excitaions 3 1.3 BEC in periodic potentials 7 1.4 Solitons 8 1.5 BEC with long-range interaction 10 Ch2 Rydberg-dressed Systems 12 2.1 Dressed atoms 13 2.2 Rydberg-dressed atoms 14 2.3 Superfluid and roton instability 17 2.4 Rydberg-dressed atoms in periodic potentials 20 Ch3 Gap Solitons in Rydberg-dressed Systems 23 3.1 Numerical approach to gap solitons 24 3.2 Gap solitons with short-range interaction 27 3.3 Gap solitons with long-range interaction 31 Ch4 Dynamics and Stability 39 4.1 Evolution and stability 40 4.2 Quantum oscillation 45 4.3 Stationary vs. oscillation 49 Ch5 Conclusion 50 Bibliography 52

    [1] Wolfgang Ketterle. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys., 74(1331), 2002.

    [2] Lev P. Pitaevskii Franco Dalfovo, Stefano Giorgini and Sandro Stringari. Theory of bose-einstein condensation in trapped gases. Rev. Mod. Phys., 71(463), 1999.

    [3] Wouter Montfrooij Alexander J.M. Schmets. Teaching superfluidity at the introductory level. arXiv, cond-mat(0804.3086), 2008.

    [4] C.J. Pethick and H. Smith. Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, 2nd edition, 2008. (Ch6-Ch10).

    [5] Kirstine Berg-Sørensen and Klaus Mølmer. Bose-einstein condensates in spatially periodic potentials. Phys. Rev. A, 58(1480), 1998.

    [6] Tilman Esslinger Theodor W. Hänsch Immanuel Bloch Markus Greiner, Olaf Mandel. Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature(London), 415(39), 2002.

    [7] L. Santos K. Góral and M. Lewenstein. Quantum phases of dipolar bosons in optical lattices. Phys. Rev. Lett., 88(170406), 2002.

    [8] R Carretero-González, D J Frantzeskakis, and P G Kevrekidis. Nonlin-ear waves in bose–einstein condensates: physical relevance and mathe-matical techniques. Nonlinearty, 208(R139), 2008.

    [9] L. Debnath. Nonlinear Partial Differential Equations. Springer, 3 edi-tion, 2012. Ch9.

    [10] Sven Hensler Jürgen Stuhler Axel Griesmaier, Jörg Werner and Tilman Pfau. Bose-einstein condensation of chromium. Phys. Rev. Lett., 94(160401), 2005.

    [11] G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller. Strongly correlated gases of rydberg-dressed atoms: Quantum and clas-sical dynamics. Phys. Rev. Lett., 104(22302), 2010.

    [12] C.-H. Hsueh, T.-C. Lin, T.-L. Horng, and W. C. Wu. Quantum crystals in a trapped rydberg-dressed bose-einstein condensate. Phys. Rev. A, 86(013619), 2012.

    [13] Gordon W. F. Drake. Springer Handbook of Atomic, Molecular, and Optical Physics. Springer, 2nd edition, 2006. (Ch14).

    [14] Vera Bendkowsky Björn Butscher Robert Löw Luis Santos Rolf Heide-mann, Ulrich Raitzsch and Tilman Pfau. Evidence for coherent collec-tive rydberg excitation in the strong blockade regime. Phys. Rev. Lett., 99(163601), 2007.

    [15] T. G. Walker M. Saffman and K. Mølmer. Quantum information with rydberg atoms. Rev. Mod. Phys., 82(2313), 2010.

    [16] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker and M. Saffman. Observation of rydberg blockade between two atoms. Nature Physics, 5(110-114), 2009.

    [17] A. J. Leggett. Can a solid be ”superfluid”? Phys. Rev. Lett., 25(1543), 1970.

    [18] Nigel R. Cooper and Zoran Hadzibabic. Measuring the superfluid frac-tion of an ultracold atomic gas. Phys. Rev. Lett., 104(030401), 2010.

    [19] L.P. Pitaevskii. Nonlinear Waves: Classical and Quantum Aspects. Springer Netherlands, 2005. p175-p192.

    [20] C.H. Hsueh, Y.C. Tsai and W.C. Wu. Intrinsic-to-extrinsic supersolid transition and fractionally modulated states in a lattice ultracold bose gas with long-range interaction. Phys. Rev. A, 92(013634), 2015.

    [21] T.F. Xu, X.M. Guo, X.L. Jing, W.C. Wu, and C.S. Liu. Gap solitons and bloch waves of interacting bosons in one-dimensional optical lat-tices: From the weak- to the strong-interaction limits. Phys. Rev. A, 83(043610), 2011.

    [22] Mordechai Segev Zhigang Chen and Demetrios N Christodoulides. Opti-cal spatial solitons: historical overview and recent advances. Phys. Rev. A, 75(086401), 2012.

    [23] Marek Trippenbach Michał Matuszewski, Wieslaw Królikowski and Yuri S. Kivshar. Simple and efficient generation of gap solitons in bose-einstein condensates. Rep. Prog. Phys., 73(063621), 2006.

    [24] Pearl J. Y. Louis, Elena A. Ostrovskaya, Craig M. Savage, and Yuri S. Kivshar. Bose-einstein condensates in optical lattices: Band-gap struc-ture and solitons. Phys. Rev. A, 67(013602), 2003.

    [25] T. Mayteevarunyoo and B. A. Malomed. Stability limits for gap soli-tons in a bose-einstein condensate trapped in a time-modulated optical lattice. Phys. Rev. A, 74(033616), 2006.

    [26] Yongping Zhang and Biao Wu. Composition relation between gap soli-tons and bloch waves in nonlinear periodic systems. Phys. Rev. Lett., 102(093905), 2009.

    [27] C. J. Pethick M. Machholm and H. Smith. Band structure, elementary excitations, and stability of a bose-einstein condensate in a periodic potential. Phys. Rev. A, 67(053613), 2003.

    [28] L. D. Carr B. T. Seaman and M. J. Holland. Nonlinear band struc-ture in bose-einstein condensates: Nonlinear schrödinger equation with a kronig-penney potential. Phys. Rev. A, 71(033622), 2005.

    [29] Andrey A. Sukhorukov and Yuri S. Kivshar. Nonlinear localized waves in a periodic medium. Phys. Rev. Lett., 87(083901), 2001.

    [30] Oliver Morsch and Markus Oberthaler. Dynamics of bose-einstein con-densates in optical lattices. Rev. Mod. Phys., 78(179), 2006.

    [31] J. J. Sakurai and Jim J. Napolitano. Modern Quantum Mechanics. Addison-Wesley, 2nd edition, 2010. (Ch4-2 and Problems 6).

    [32] De Luo Boris A. Malomed Jason H. V. Nguyen, Paul Dyke and Ran-dall G. Hulet. Collisions of matter-wave solitons. Nature Physics, 10(918-922), 2014.

    下載圖示
    QR CODE