研究生: |
陳俊宇 |
---|---|
論文名稱: |
車輛分類與計數系統 Vehicle Classification and Counting |
指導教授: |
陳世旺
Chen, Sei-Wang 梁祐銘 Liang, Yu-Ming |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 累計曲線法 、Time-Spatial Imag 、SVM陰影去除 、模糊限制滿足技術 、遮蔽處理 |
英文關鍵詞: | Accumulated Curve, Time-Spatial Imag, SVM Shadow Removal, Fuzzy Constraints Satisfaction Propagation, occlusion |
論文種類: | 學術論文 |
相關次數: | 點閱:149 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的進步及攝影器材的普及,視訊監控已成為我們生活中最重要的安全監控工具之一,而車種分類與計數更在智慧型交通安全監控系統中扮演著重要的角色,其目的是希望能改善交通壅塞與安全的問題。本研究發展一個以電腦視覺為基礎的即時車種分類及車輛計數系統。在系統運作的過程中,主要可以分為兩個大步驟,第一大步驟為車輛的擷取,第二大步驟為車輛分類與計數。在車輛的擷取的部份,首先對輸入的影片建立Time-Spatial Images(TSI),並利用Support Vector Machine(SVM)與HSV Based on Deterministic Non-Model Based Approach來分類陰影與非陰影,將TSI圖中的陰影部份去除後,再透過簡單的morphology處理擷取Region of Interest(ROI)即為車輛在TSI圖的區域。在車輛分類與計數的部份,我們使用ROI累計曲線法和Fuzzy Constraints Satisfaction Propagation(FCSP)演算法來處理遮蔽的問題,利用Fuzzy的觀念進行各種車種模糊比對,從有遮掩情形的ROI區域中分離出獨立的車輛,並進行車輛的分類與計數。實驗的結果顯示所提技術可以在無特殊輔助硬體的環境下,能有效且即時地執行車種分類與計數,並證明了此方法具可行性的。
Vehicle classification and counting play an important role in the intelligent transportation system, as they may serve to improve traffic congestion and safety problems. Therefore, this study has developed a real-time and computer-based visual vehicle classification and counting system. This will involve establishing Time-Spatial Images (TSI) from input video, removing the shadow portions in TSI through the use of Support Vector Machine (SVM) and Deterministic Non-Model Based Approach, capturing the Region of Interest (ROI) through a simple morphology process, and finally using the ROI accumulative curve method and Fuzzy Constraints Satisfaction Propagation (FCSP) to process occlusion problems and perform vehicle classification and counting. The experimental results have shown that the proposed method is feasible.
[1] 交通部「機動車輛登記數」機動車輛登記數為公路總局,
http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a3301.
[2] I. Masaki, “Machine-Vision Systems for Intelligent Transportation Systems”, IEEE Intelligent Systems, VOL. 13, NO. 6, pp. 24-31, 1998.
[3] Y.Liu, G.Li, S.Hu, and T.Ye, “Real-time Detection of Traffic Flow Combining Virtual Detection-line and Contour Feature”, International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE) Changchun, China, December 16-18, 2011.
[4] L.Unzueta, M.Nieto, A.Cortes, J.Barandiaran, O.Otaegui, and P.Sanchez, “Adaptive Multicue Background Subtraction for Robust Vehicle Counting and Classification” , IEEE Transactions on Intelligent Transportation Systems, VOL. 13, NO. 2, JUNE 2012.
[5] N.C.Mithun, N.U.Rashid, and S. M. M.Rahman, “Detection and Classification of Vehicles from Video Using Multiple Time-Spatial Images”, IEEE Transactions on Intelligent Transportation Systems, VOL. 13, NO. 3, SEPTEMBER 2012.
[6] B. K.Horn, and B. G. Schunck, “Determine Optical Flow”, Artificial intelligence, VOL.17, Issues 1-3, pp. 185-203, 1981.
[7]C. Anderson, Peter Burt, and G. van der Wal, “Change Detection and Tracking Using Pyramid Transformation Techniques”, In Proceedings of SPIE - Intelligent Robots and Computer Vision, VOL. 579, pp. 72-78, 1985.
[8] S. Takaba, T. Sekine, and B.W. Hwang, “A Traffic Flow Measuring System Using a Solid State Sensor”, International Conference on Road Traffic Data Collection, London, UK, pp.110-114, 1984.
[9]W.F.Gardner, and D.T.Lawton, “Interactive Model-Based Vehicle Tracking” ,IEEE Trans. On Pattern Analysis and Machine Intelligence, VOL. 18, pp.1115-1121, 1996.
[10]A.H.S.Lai, and N.H.C.Yung,“A Fast and Accurate Scoreboard Algorithm for Estimating Stationary Background in an Image Sequence”, Proc. of IEEE International Symp. on Circuits and Systems, VOL. 4, pp. 241-244, 1998.
[11] D.W.Lim, S.H.Choi, and J. S. Jun, “Automated Detection of all Kinds of Violations at a Street Intersection Using Real-Time Indivisual Vehicle Tracking”, Proc. of Fifth IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 126-129, 2002.
[12] J.M.Wangt, Y.C.Chung, C.L.Changt, and S.W.Chen, “Shadow Detection and Removal for Traffic Images”, Proceedings of the 2004 IEEE International Conference an Networking. Sensing & Control Taipei, Taiwan, March 21-23. 2004.
[13] E.Arbel, and H.Hel-Or, “Shadow Removal Using Intensity Surfaces
and Texture Anchor Points”, IEEE Transactions on Intelligent Transportation Systems, VOL. 33, NO. 6, JUNE 2011.
[14] P. Gamba, M. Lilla, and A. Mecocci, “A Fast Algorithm for Target Shadow Removal in Monocular Colour Sequences”, Proc. of International Conf. on Image Processing, VOL.1 ,pp. 436-447, 1997.
[15] J.Kato, S.B.Joga, and J.Rittscher, “An HMM-based Segmentation Method for Traffic Monitoring Movies”, IEEE Transactions on Intelligent Transportation Systems, VOL. 24, NO. 9, SEPTEMBER 2002.
[16] Biano, “Support Vector Machine簡介” , http://www.cmlab.csie.ntu.edu.tw/~cyy/learning/tutorials/SVM3.pdf
[17] A. Prati, I. Mikić, C. Grana, and M. M. Trivedi, “Shadow detection algorithms for traffic flow analysis: a comparative study,” IEEE Conf. on Intelligent Transportation System, pp. 340-345, 2001.
[18] M.Qing, V.D.Hoang, and K.H.Jo, “Localization and Tracking of Same Color Vehicle under Occlusion Problem”, Mecatronics-REM 2012
November 21-23, 2012. Paris, France.
[19] J.Kilger,“A Shadow Handler in a Video-Dased Realtime Traffic Monitoring System”,Proc. IEEE Workshop on Applications of Computer Vision, pp. 11-18, 1992.
[20] Z.Ma, S.Yin, C.Li, and Y.Zheng,“Improved Vehicle Occlusion Segmentation Method Based on Feature Points Combination”, Journal of Computational Information Systems 9: 1 (2013) 373–380.
[21] Y.Li, B.Tian, B.Li, G.Xiong, F.Zhu, and K.Wang,“Vehicle Detection with a Part-based Model for Complex Traffic Conditions”, IEEE International Conference on Vehicular Electronics and Safety (ICVES), 28-30 July 2013.
[22]J.H.Chun, “Automatic Traffic Monitoring System ”, MS Thesis, Dept. of Information and Computer Education, National Taiwan Normal University, 2001.
[23] Chih-Jen Lin,“LIBSVM ”, http://www.csie.ntu.edu.tw/~cjlin/.
[24] Nick Efford,“Digital Image Processing: A Practical Introduction Using Java”,Pearson Education, 2000.
[25] D. Dubois, H. Fargier, H. Prade, Propagation and satisfaction of Gexible constraints, in: R. Yager, L. Zadeh (ed.),Fuzzy Sets, Neural Networks and Soft Computing, 1994, pp. 166 –187.
[26] 蔡宗諭學長,“Real-Time Vehicle Classification and Counting”,國立臺灣師範大學資訊工程研究所, 2004.