簡易檢索 / 詳目顯示

研究生: 薛喬方
Syue, Jiao-Fang
論文名稱: 層狀二硫化鉬在共振激發下的偏振拉曼光譜
Polarized Raman Spectrum of Layered Molybdenum Disulfide under Resonant Excitation
指導教授: 陸亭樺
Lu, Ting-Hua
藍彥文
Lan, Yann-Wen
口試委員: 陸亭樺
Lu, Ting-Hua
藍彥文
Lan, Yann-Wen
董容辰
Tung, Jung-Chen
口試日期: 2022/12/21
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 38
中文關鍵詞: 拉曼光譜二硫化鉬偏振解析溫度變化
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300164
論文種類: 學術論文
相關次數: 點閱:250下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 偏振拉曼光譜已經被應用在測量二維材料上,包括石墨稀與過渡金屬二硫化鉬,尤其是使用線偏振和圓偏振光為激發光線。量測不同溫度下的二硫化鉬受不同偏振入射光影響的拉曼張量,我們可以知道聲子振動模式是如何表現其偏振態。在本實驗中,利用紅光共振激發變溫下的二硫化鉬,結果顯示,在低溫狀態下,線偏振的入射光激發時,面內振動(E')和面外振動(A_1')模式表現出線偏振的散射光,b mode則是呈現非各向同性(anisotropic),隨著溫度的上升,E' 、A_1'仍維持在線偏振的散射光,而b mode則漸漸改變成線偏振的散射光;圓偏振的入射光激發時,低溫狀態的E'和A_1'模態呈現出旋向守恆(helicity-conserve),b mode 則是表現出旋向轉換(helicity-exchange),隨著溫度的上升,E' 、A_1'仍維持旋向守恆,但b mode會漸漸變成旋向守恆。
    實驗結果顯示了b mode的獨特性,因此我們引用了一些電子-聲子耦合如何影響拉曼強度的偏振態有關的論文,來解釋這個特殊的現象,同時深入探討層狀二維材料的聲子與光子之間的交互作用,以便提供未來先進材料應用更多重要的基礎與應用。

    第一章 二硫化鉬的基本特性 1 1.1實驗動機 1 1.2電子能階與光譜測量原理 2 1.2.1電子能階的轉換 2 1.2.2振動能階的測量 3 1.3二硫化鉬的光譜特性 5 1.3.1光致發光光譜 6 1.3.2拉曼聲子的振動模態 8 第二章 偏振光激發螢光與拉曼光譜 13 2.1光學偏振性 (檢驗左旋光、右旋光) 13 第三章 變溫光激發螢光與拉曼實驗結果 17 3.1實驗架設 17 3.2光激發螢光實驗數據與分析 20 3.2.1單層二硫化鉬變溫數據 20 3.2.2雙層二硫化鉬變溫數據 22 3.2.3變溫二硫化鉬偏振度 23 3.3拉曼實驗數據與分析 24 3.3.1綠光激發雙層二硫化鉬變溫數據 28 3.3.2紅光激發雙層二硫化鉬變溫數據 29 3.3.3變溫二硫化鉬偏振度 31 3.4數據擬合分析與討論 32 3.4.1紅光拉曼低溫與常溫二硫化鉬數據擬合 32 3.4.2紅光拉曼溫度變化二硫化鉬數據擬合 33 第四章 總結及未來工作 35 參考資料 36

    Wang, S., Sawada, H., Allen, C. S., Kirkland, A. I., & Warner, J. H. (2017). Orientation dependent interlayer stacking structure in bilayer MoS2 domains. Nanoscale, 9(35), 13060–13068.
    Shieh J. M., Lai Y. F., Lin Y. C., & Fang J. Y. (2005). Photoluminescence: Principles, Structure, and Applications 科儀新知, 146期 (2005 / 06 / 01), P39 – 51
    Cai Y., Lan J., Zhang G., & Zhang Y. W. (2014). Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2 Physical Review B 89, 035438
    Tonndorf P., Schmidt R., Böttger P., Zhang X., Börner J., Liebig A., ...Bratschitsch R. (2013). Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2.Optics Express Vol. 21, Issue 4, pp. 4908-4916
    Li H., Zhang Q., Yap C. C. R., Tay B. K., Edwin T. H. T., Olivier A., Baillargeat D.(2012). From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Advanced functional materials, Volume 22, Issue 7, P1321-1538
    Lin Z., Liu W., Tian S. , Zhu K. , Huang Y., & Yang Y.(2021). Thermal expansion coefficient of few-layer MoS2 studied by temperature-dependent Raman spectroscopy. Scientific Reports volume 11, Article number: 7037
    Golovynskyi S., Irfan I., Bosi M., Seravalli L., Datsenko O. I., Golovynska I., Li B., Lin D., & Qu J.(2020) Exciton and trion in few-layer MoS2: Thickness- and temperature-dependent photoluminescence. Applied Surface Science 515(13):146033
    Cadiz F., Courtade E., Robert C., Wang G., Shen Y., Cai H., Taniguchi T., Watanabe K., Carrere H., Lagarde D., ... Urbaszek B.(2017). Excitonic Linewidth Approaching the Homogeneous Limit in MoS2-Based van der Waals Heterostructures. Physical Review X 7, 021026
    Kaupmees R., Komsa H. P., & Krustok J.(2018). Photoluminescence Study of B-Trions in MoS2 Monolayers with High Density of Defects. physica status solidi (b) Volume256, Issue3, March 2019, 1800384
    Castellanos-Gomez A., Zant H. S. J., & Steele G. A.(2014). Folded MoS2 layers with reduced interlayer coupling. Nano Research volume 7, pages 572–578
    Bera, A., & Sood, A.K. (2014). Insights into Vibrational and Electronic Properties of MoS2 Using Raman, Photoluminescence, and Transport Studies.
    Zhang X., Qiao X. F., Shi W., Wu J.B., Jianga D. S., & Tan P. H.(2015). Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev., 2015,44, 2757-2785
    Zhang, X., Han, W. P., Wu, J. B., Milana, S., Lu, Y., Li, Q. Q., Ferrari, A. C., & Tan, P. H. (2013). Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Physical Review B, 87(11), 115413
    Chen S.Y., Zheng C., Fuhrer M. S., &Yan J.(2015). Helicity-Resolved Raman Scattering of MoS2, MoSe2, WS2, and WSe2 Atomic Layers. Nano Lett. 2015, 15, 4, 2526–2532
    Sekine T., Uchinokura K., Nakashizu T., Matsuura E., & Yoshizakit R.(1984). Dispersive Raman Mode of Layered Compound 2H-MoS2, under the Resonant Condition. Journal of the Physical Society of Japan Vol. 53, No. 2, February, 1984, pp. 811-818
    Romeo M.(2004). Electromagnetoacoustic surface waves on dispersive piezoelectric layered media. The Journal of the Acoustical Society of America 116, 1488
    Livneh T., & Sterer E.(2010). Resonant Raman scattering at exciton states tuned by pressure and temperature in 2H-MoS2. Physical Review B 81, 195209
    Carvalho, B., Wang, Y., Mignuzzi, S. et al (2017). Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nat Commun 8, 14670
    黃松勳(2017). 二維材料的發展與應用進程.Research Portal 科技政策觀點 2018 NO.7。取自 https://reurl.cc/qZ9dZ3
    林彥甫(2019). 二維電子元件的發展可否成為下一世代的希望?! 物理雙月刊。取自 https://reurl.cc/x1YZlb
    Chhowalla, M., Shin, H., Eda, G. et al (2013). The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem 5, 263–275
    Zhao Y., Zhang S., Shi Y., Zhang Y., Saito R., Zhang J., & Tong L.(2020). Characterization of Excitonic Nature in Raman Spectra Using Circularly Polarized Light. ACS Nano 2020, 14, 8, 10527–10535
    Kaasbjerg K., Thygesen K. S., & Jauho A. (2013). Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Physical Review B 87, 235312

    下載圖示
    QR CODE