簡易檢索 / 詳目顯示

研究生: 賴亞彤
Lai, Ya-Tong
論文名稱: 臺灣南部海域增積岩體流體滯留深度與力學強度之探討
Study of Fluid Retention Depth and Strength of Accretionary Wedge Offshore Southern Taiwan
指導教授: 葉恩肇
Yeh, En-Chao
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 103
中文關鍵詞: 不均質増積楔型體理論流體滯留深度滑脫面斷層強度增積岩體強度基底滑脫面之Hubbert-Rubey孔隙水壓比基底滑脫面上的平均摩擦係數
英文關鍵詞: critically heterogeneous Coulomb wedge theory, fluid retention depth (FRD), strengths of decollement, strengths of wedge, Hubbert-Rubey pore-water pressure ratio, average coefficient of friction
DOI URL: http://doi.org/10.6345/THE.NTNU.DES.006.2018.B07
論文種類: 學術論文
相關次數: 點閱:148下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據歷史海嘯資料,大多的海嘯事件皆由海底地震引發,且發生於隱沒帶的海底地震具有較高的威脅性。增積岩體為隱沒帶重要的地質特徵之一,但影響其參數中的滑脫面強度(F)以及增積岩體強度(W)卻尚未被研究清楚。前人研究發現臺灣南部海域存在增積岩體的構造,為釐清增積岩體的力學機制,故此,本研究利用TAIGER計畫在臺灣南部馬尼拉海溝隱沒帶收集的四條長支距震測資料進行分析,以期瞭解臺灣南部海域増積岩體由南到北的力學機制之演變與影響因素。
    在震測剖面處理上,本研究使用特徵向量濾波(eigenvector filter)及Radon濾波消除剖面的複反射能量,並利用層間速度(interval velocity)進行剖面時深轉換以獲得地層中正確的構造深度。藉由速度資料可獲得地層中的流體滯留深度(fluid retention depth, FRD),同時量測海床坡度(α)及滑脫面傾角(β)。最後將測得數值經由臨界不均質増積楔型體理論進行計算,並利用航次OR1-1032於小琉球外海取得岩芯之平均抗剪摩擦角(φ)推算影響增積岩體強度的基底滑脫面上的孔隙水壓比(λb)及基底滑脫面上的平均摩擦係數(μb)。
    彙整四條震測剖面的結果,發現流體滯留深度在斷層發生前會出現較深的深度,也許可以藉由此深度位置指示未來斷層發育的方向。本研究計算結果與前人於其他地區計算結果比較,發現臺灣南部海域的増積岩體有較強的滑脫面斷層強度及較弱的增積岩體強度,岩體強度約為斷層強度的2到4倍。北邊兩條測線(MGL0905-25A及MGL0908-4)因有海底山隱沒,故推算後之基底滑脫面上的孔隙水壓比較低,基底滑脫面上的平均摩擦係數較高。且測線MGL0905-25A底滑脫面上的平均摩擦係數較其他測線高出許多,可能造成能量在此累積,尚未釋放,未來有規模較大地震發生的可能。

    According to historical tsunami data, most of the tsunami events are triggered by submarine earthquakes, and the submarine earthquakes that occur in the subduction zone are highly threatening. The accretionary wedge is one of the important geological features of the subduction zone, but the strengths of decollement and accretionary wedge are difficult to constrain. In the Manila subduction zone south of Taiwan, previous studies have reported that a major decollement is present in the accretionary wedge. This study analyzed four large-offset seismic profile collected during the TAIGER survey in 2009, for the purpose to understanding the evolution and influencing factors of the mechanical mechanism of the accretionary wedge in southern Taiwan.
    In seismic process, Radon filter and eigenvector filter are applied to eliminate the multiples on the seismic profiles and uese interval velocity to time-depth correlation. The fluid retention depth (FRD) is constrained by the velocity structure, and measure the seafloor slope (α) and the decollement dip(β). Controlling factor of shape of Manlia subduction zone is investigated via the critically heterogeneous Coulomb wedge theory. Also, the average shear-friction angle (φ) of the core obtained from the OR1-1032 survey at Xiao Liuqiu is used to calculate the pore-water pressure ratio (λb) and the average coefficient of friction (μb) of the decollement.
    Integrating the results from previous studies and this study, found that the fluid retention depth (FRD) deeper before the fault occurs and may indicate the direction of future fault development. Compare to previous studying, wdge in the southern of Taiwan relatively sronger decollement strenght and weaker wege strength. The wege strnght is about two to four times the decollement strenght. Because of the seamount subduction in lines MGL0905-25A and MGL0908-4, the pore-water pressure is relatively low and the average coefficient of friction is relatively high. And the average coefficient of friction of line MGL0905-25A is much higher than other lines, there may be a high potential to produce large earthquakes in the future.

    致謝 I 中文摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XIII 符號說明 XIV 第一章 前言 1 1-1 研究動機與目的 1 1-2 論文架構與內容 2 第二章 地質背景及方法應用回顧 5 2-1 呂宋弧溝系統構造特徵 5 2-1-1 馬尼拉海溝 5 2-1-2 增積楔形體 5 2-2 臨界增積楔形體理論之應用 12 2-2-1 日本海溝隱沒帶 12 2-2-2 紐西蘭北島外海之Hikurangi隱沒帶邊緣 17 2-2-3 西班牙Monte Perdido逆衝斷層及義大利Monte Coscerno逆衝斷層 20 第三章 理論背景及分析方法 27 3-1 均質臨界增積楔形體理論 27 3-2 流體滯留深度 30 3-3 震測資料參數和來源 36 3-4 震測資料處理 38 3-4-1 基本震測資料處理流程 38 3-4-2 消除複反射技術 40 3-4-2-1 特徵向量濾波 40 3-4-2-2 Radon濾波 41 3-5 研究流程 41 第四章 研究結果與分析 50 4-1 測線MGL0908-23分析結果 50 4-1-1 震測剖面解釋及速度構造 50 4-1-2 臨界增積楔形體計算結果 53 4-2 測線MGL0908-22分析結果 57 4-2-1 震測剖面解釋及速度構造 57 4-2-2 岩體強度及斷層強度計算結果 60 4-3 測線MGL0905-25A分析結果 64 4-3-1 震測剖面解釋及速度構造 64 4-3-2 岩體強度及斷層強度計算結果 68 4-4 測線MGL0908-4分析結果 73 4-4-1 震測剖面解釋及速度構造 73 4-4-2 岩體強度及斷層強度計算結果 76 第五章 討論 82 5-1 四條測線ZFRD/H、岩體強度及主要基底滑脫面強度的比較 82 5-1-1 四條測線ZFRD/H及W的比較 82 5-1-3 四條測線F的比較 85 5-2 流體滯留深度(FRD)的分佈關係 87 5-2-1 流體滯留深度與斷層的關係 87 5-2-2 流體滯留深度指示海洋地殼的位置 87 5-3 Hubbert-Rubey 孔隙水壓比(λb) 93 5-4 平均摩擦係數(μ) 95 第六章 結論 98 參考文獻 99

    參考文獻
    中文部分:
    古佳艷,2004。台灣至呂宋島間馬尼拉海溝的震測研究:從正常隱沒到初期碰撞抬昇的上部地殼構造。國立中央大學地球物理研究所碩士論文。共82頁。
    莊哲平,2012。臺灣南部海域馬尼拉隱沒系統的構造特徵。國立臺灣大學海洋研究所碩士論文。共84頁。
    陳憶萍,2015。結合反射震測與折射震測資料探討臺灣南部呂宋隱沒帶的構造特徵。國立臺灣大學海洋研究所碩士論文。共94頁。
    馮力中,2006。台灣南部海域增積楔形體的構造特徵。國立臺灣大學海洋研究所碩士論文。共68頁。

    英文部分:
    Anderson, H. and Webb, T., 1994. " New Zealand seismicity: patterns revealed by the upgraded National Seismograph Network. " New Zealand Journal of Geology andGeophysics. 24, 477-493.
    Angelier, J., Lee, J.-C., Chu, H.-T., Hu, J.-C., Lu, C.-Y., Chan, Y.-C., Lin, T.-J., Font, Y., Deffontaines, B. and Tsai, Y.-B., 2001, " The Chichi earthquake, 1999, and its role in the Taiwan orogen. " Earth and Planetary Sciences. 333, 5-21.
    Asano, Y., Saito, T., Ito, Y., Shiomi, K., Hirose, H., Matsumoto, T., Aoi, S., Hori, S. and Sekiguchi, S., 2011. " Spatial distribution and focal mech-anisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake. " Earth Planets Space. 63(7), 669-673.
    Barker, D.H.N., Sutherland, R., Henrys, S. and Bannister, S., 2009. " Geometry of the Hikurangi subduction thrust and upper plate, North Island, New Zealand. " G-Cubed. 10,Q02007.
    Bassetta, D., Sutherland, R., and Henrys, S., 2014. " Slow wavespeeds and fluid overpressure in a region of shallow geodetic locking and slow slip, Hikurangi subduction margin, New Zealand. " Earth and Planetary Science Letters. 389, 1-13.
    Byerlee, J. D., 1978, " Friction of rocks, Pure Appl. " Geophys. 116, 615-626.
    Byrne, D.E., Davis, D.M., and Sykes, L.R., 1988, " Loci and maximum size of thrust earthquakes and mechanics of the shallow region of subduction zones. " Tectonics. 7, 833-857.
    Dahlen, F. A., Suppe, J. and Davis, D., 1984. " Mechanics of Fold-and-Thrust Belts and Accretionary Wedges Cohesive Coulomb Theory. " Journal of Geophysical Research. 89, 10087-10101
    Dahlen, F. A., 1990. " Critical Taper Model of Fold-and-Thrust Belts and Accretionary Wedges. " Annual Reviews of Earth and Planeray Sciences. 18, 44.
    Daniel, E. K. and Sharman, G. F., 1975, " Subduction and Accretion in Trenches. " Geological Society of America Bulletin. 86, 377-89.
    Davis, D., Suppe, J and Dahlen, F. A., 1983. " Mechanics of fold-and-thrust belts and accretionary wedges. " Journal of Geophysical Research. 88, 1153-1172.
    Davis, D.M. and Huene, R., 1987. " Inferences on sediment strength and fault friction from structures at the Aleutian Trench. " Geology. 15, 517-522.
    Fagereng, Å. and Ellis, S., 2009. " On factors controlling the depth of interseismic coupling on the Hikurangi subduction interface, New Zealand. " Earth and Planetary Science Letters. 278, 120-130.
    Fagereng, Å., 2011. " Wedge geometry, mechanical strength, and interseismic coupling of the Hikurangi subduction thrust, New Zealand. " Tectonophysics. 507(1–4), 26-30.
    Festa, A., Pini, G.A., Dilek, Y. and Codegone, G., 2010, " Mélanges and mélange-forming processes: A historical overview and new concepts. " International Geology Review. 52, 1040-1105.
    Flueh, E.R., Fisherb, M. A., Bialasa, J., Childsb, J. R., Klaeschena, D., Kukowskia, N., Parsonsb, T., Schollbd, D. W., Brinkc, U. T., Tréhue, A. M. and Vidala, N., 1998. " New seismic images of the Cascadia subduction zone from cruise SO108 - ORWELL. " Tectonophysics. 211, 115-134.
    Fukao, Y., 1979. " Tsunami earthquakes and subduction processes Near deep-sea trenches. " Journal of Geophysical Research. 84, 2303-2314.
    Huang, C. Y., Yuan, P. B., Lin, C. W., Wang, T. K. and Chang, C. P., 2000. " Geodynamic 92 processes of Taiwan arc–continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. " Tectonophysics. 325, 1-21.
    Hsu, H. H., Dong, J. J., Hsu, S. K., and Su, C. C., 2018. " Back analysis of an earthquake-triggered submarine landslide near the SW of Xiaoliuqiu. " Terrestrial, Atmospheric and Oceanic Sciences Journal. 29, No.1, 77-85.
    Ide, S., Baltay, A. and Beroza, G . C., 2011, " Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-oki earthquake. " Science. 332, 1426-1429.
    Ikari, M.J. and Saffer, D.M., 2011, " Comparison of frictional strength and velocity dependence between fault zones in the Nankai accretionary complex. " Geochemistry. Geophysics, Geosystems. 12, Q0AD11.
    Kanamori, H., 1972. " Tectonic implications of the 1944 Tonankai and the 1946 Nankaido earthquakes." Physics of the Earth and Planetary Interiors. 5, 129-139.
    Kimura, G., Yamaguchi, A., Hojo, M., Kitamura, Y., Kameda, J., Ujiie, K., Hamada, Y., Hamahashi, M. and Hina, H., 2012. " Tectonic mélange as fault rock of subduction plate boundary. " Tectonophysics. 568-569, 25-38.
    Kirby, S., Geist, E., Lee, W. H. K., Scholl, D. and Blakely, R., 2006. " Tsunami Source Characterization for Western Pacific Subduction Zones. " 2006 USGS Tsunami Source Working Group.
    Koge, H., Fujiwara, T., Kodaira, S., Sasaki, T., Kameda, J., Kitamura, Y., Hamahashi, M., Fukuchi, R., Yamaguchi, A., Hamada, Y., Ashi, J., and Kimura, K., 2014. " Friction properties of the plate boundary megathrust beneath the frontal wedge near the Japan Trench: An inference from topographic variation. " Earth Planets Space. 66(1), 153.
    Lacroix, B., Buatier, M., Labaume, P., Travé, A., Dubois, M., Charpentier, D., Ventalon, S., and Convert-Gaubier, D., 2011. " Microtectonic and geochemical characterization of thrusting in a foreland basin: Example of the South Pyrenean orogenic wedge (Spain). " Journal of Structural Geology. 33, 1359–1377.
    Lallemand, S., Font, Y., Bijwaard, H., and Kao, H., 2001. " New insights on 3-D plate interaction near Taiwan from tomography and tectonic implication. " Tectonophysics. 335, 229-253.
    Lay, T., Kanamori, H., Ammon, C. J., Nettles, M., Ward, S. N., Aster, R. C., Beck, S. L., Bilek, S. L., Brudzinski, M. R., Butler, R., DeShon, H. R., Ekström, G., Satake, K., and Sipkin, S., 2005. " The Great Sumatra-Andaman Earthquake of 26 December 2004. " Science. 308, 1127-1133.
    Lin, A. T., Yao, B., Hsu, S. K., Liu, C. S., and Huang, C. Y., 2009. " Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. " Tectonophysics. 479(1), 28-42.
    Lin,W., Byrne, T. B., Kinoshita, M., McNeill, L. C., Chang, C., Lewis, J. C., Yamamoto, Y., Saffer, D. M., Moore, C., Hung, Y. W., Tsuji, T., Yamada, Y., Conin, M., Saito, S., Ito, T., Tobin,H. J., Kimura, G., Kanagawa, K., Ashi, J., Underwood, and M. B., Kanamatsu, T., 2015. " Distribution of stress state in the Nankai subduction zone, southwest Japan and a comparison with Japan Trench. " Tectonophysics. 692, PartB, 120-130.
    Liu, C. S., Huang, I. L.,and Teng, L. S., 1997. " Structural features off southwestern Taiwan. " Marine Geology. 137, 305-319.
    Liu, C. S., Schnurle, P., Wang, Y. S., Chung, S. H., Chen, S. C., and Hsiuan, T. H., 2006. " Distribution and characters of gas hydrate offshore of southwestern Taiwan. " Terrestrial, Atmospheric and Oceanic Sciences. 17(4), 615-644.
    McCaffrey, R., Wallace, L., and Beavan, J., 2008. " Slow slip and frictional transition at lowtemperature at the Hikurangi subduction zone. " Nature Geoscience. 1, 316–320.
    Moore, J.C., Roeske, S., Cowan, D.S., Lundberg, N., Gonzales, E., Schoonmaker, J., and Lucas, S.E., 1986. " Scaly fabrics from Deep Sea Drilling Project cores from forearcs, in Moore, J.C., ed., Structural fabrics in Deep Sea Drilling Project cores from forearcs. " Geological Society of America Memoir. 166, 55-74.
    Moore, J.C., and Saffer, D.M., 2001. " Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress. " Geology. 29, 183-186.
    Morrow, C., Radney, B., and Byerlee, J., 1992. " Frictional strength and the effective pressure law of montmorillonite and illite clays. " International Geophysics. 51, 69-88.
    Ozawa, S., T. Nishimura, H. Suito, T. K obayashi, M. Tobita, and T. Imakiire, 2011. " Coseismic and postseismic slip of the 2011 magnitude 9 Tohoku-Oki earthquake. " Nature. 117, 373-376.
    Reed, D. L., Lundberg, N., Liu, C. S. and Kuo, B. Y., 1992. " Structural relations along the margins of the offshore Taiwan accretionary wedge: implications for accretion and crustal kinematics. " Acta Geologica Taiwanica. 30, 105-122.
    Remitti, F., Smith, S.A.F., Mittempergher, S., Gualtieri, A.F., and Di Toro, G., 2015. " Frictional properties of fault zone gouges from the J-FAST drilling project (Mw 9.0 2011 Tohoku-Oki earthquake). " Geophysical Research Letters. 42, 2691-2699.
    Reyners, M.and Eberhart-Phillips, D., 2009. " Small earthquakes provide insight into plate coupling and fluid distribution in the Hikurangi subduction zone, New Zealand. " Earth and Planetary Science Letters. 282, 299-305.
    Rice, J.R., 2006. " Heating and weakening of faults during earthquake slip. " Journal of Geophysical Research. 111, B05311.
    Saffer, D.M., Lockner, D.A., and McKiernan, A., 2012. " Effects of smectite to illite transformation on the frictional strength and sliding stability of intact marine mudstones. " Geophysical Research Letters. 39, L11304.
    Simons, M., Sarah E. Minson, S. E., Sladen, A., Ortega, F., Jiang, J., Owen, S. E., Meng, L., Ampuero, J. P., Wei, S., Chu, R., Helmberger, D. V., Kanamori, H., Hetland, E., Moore, A. W., and Webb, F. H., 2011. " The 2011 magnitude 9.0 Tohoku-Oki earth-quake: Mosaicking the megathrust from seconds to centuries. " Science. 332, 1421-1425.
    Suppe, J., 2007. " Absolute fault and crustal strength from wedge tapers. " Geology. 35(12), 1127.
    Suppe, J., 2014. " Fluid overpressures and strength of the sedimentary upper crust. " Journal of Structural Geology. 69, Part B: 481-492.
    Tesei, T., Collettini, C., Barchi, M.R., Carpenter, B.M., and Di Stefano, G., 2014. " Heterogeneous strength and fault zone complexity of carbonate-bearing thrusts with possible implications for seismicity. " Earth and Planetary Science Letters. 408, 307–318.
    Tesei, T., Lacroix, B., and Collettini, C., 2015. " Fault strength in thin-skinned tectonic wedges across the smectite-illite transition: Constraints from friction experiments and critical tapers. " Geology. 43(10), 923-926.
    Tobin, H.J., and Saffer, D.M., 2009. " Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduction zone. " Geology. 37, 679-682.
    Townend, J., and Zoback, M.D., 2000. " How faulting keeps the crust strong. " Geology. 28, 399-402.
    Tsai, Y. B., 1986. "Seismotectonics of Taiwan." Tectonophysics. 125(1), 17-37.
    Tsuji, T., Y. Ito, M. K ido, Y. Osada, H . Fujimoto, J. Ashi, M. Kinoshita, and T. Matsuoka, 2011. " Potential tsunamigenic faults of the 2011 Tohoku earthquake. " Earth Planet Space. 63, 831-834.
    Tsuru T., Park J. O., Miura S., Kodaira S., Kido Y. and Hayashi T., 2002. " Along-arc structuralvariation of the plate boundary at the Japan Trench margin: implication of interplate coupling. " Journal of Geophysical Research. 107(B12 ), 2357.
    Vroljic, P., 1990. " On the mechanical role of smectite in subduction zones. " Geology. 18, 703-707.
    Wallace, L., Beavan, J., McCaffrey, R., and Darby, D., 2004. " Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. " Journal of Geophysical Research. 109, B12406.
    Wang, K., and Hu, Y., 2006. " Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge. " Journal of Geophysical Research. 111, B06410.
    Wei, S., R. Graves, D . H elmberger, J. P. Avouac, and J. Jiang, 2012. " Sources of shaking and flooding during the Tohoku-Oki earthquake: A mixture of rupture styles. " Earth and Planetary Science Letters. 333-334, 91-100.
    Yeh, E. C. and Suppe, J., 2014. " The Role of Heterogeneous Fluid Pressures in the Shape of Critical-Taper Marine Wedge, with Application to Barbados. " Oral Reported at European Geosciences Union General Assembly.
    Yue, L. F. and Suppe, J., 2014. " Regional pore-fluid pressures in the active western Taiwan thrust belt: A test of the classic Hubbert–Rubey fault-weakening hypothesis. " Journal of Structural Geology. 69, Part B: 493-518.
    Yu, H. S., 2000. " Closure of Manila Trench north of Latitude 21°N in transition of passive-convergent margin south of Taiwan. " Acta Oceanographica Taiwanica. 38(2), 115-127.

    下載圖示
    QR CODE