研究生: |
卓邦彥 Cho, Pang-Yen |
---|---|
論文名稱: |
多通道磁粒子造影系統開發與特性研究 The Development and Characteristization of Multichannel Magnetic Particle Imaging System |
指導教授: |
廖書賢
Liao, Shu-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 46 |
中文關鍵詞: | 多通道 、磁粒子造影 、磁流體 |
論文種類: | 學術論文 |
相關次數: | 點閱:91 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁粒子造影系統可以藉由磁奈米粒子的磁化訊號得到磁流體分佈。傳統磁流體造影系統量測方式為利用磁鐵產生梯度場並在中心用激發線圈產生激發磁場並利用一組梯度接收線圈量測訊號,但是量測方法需要時間且需要足夠強的梯度場來造影,因此有造影空間較小的缺點。
本研究旨在開發多通道磁粒子造影系統即利用多通道接收線圈擷取訊號,主要的量測方法為利用激發線圈產生範圍較大的均勻交流磁場,並將梯度接收線圈陣列置於其中並擷取訊號,而因為陣列梯度接收線圈平衡不易,所以我們使用強交流磁場(50 Oe)使磁流體開始飽和,並使磁化訊號的三倍頻成份增強。從頻譜觀察三倍頻訊號在此條件下三倍頻訊雜比較一倍頻大,因此主要量測三倍頻訊號。造影方法經由不同位置的接收線圈擷取到三倍頻訊號得出磁場分佈圖,再由磁場分佈圖使用MNE(Minimum-Norm Estimation)演算法,同步重建樣品分佈,產生即時影像。影像時間解析度可達100 毫秒,量測樣品空間解析度約為9 毫米,未來可以利用改善演算法增加造影的相似度以及改善線圈排列提高Z軸方向解析。
1. Gleich, B., & Weizenecker, J. (2005). “Tomographic imaging using the nonlinear response of magnetic particles.” Nature, 435(7046), 1214-1217.
2. Goodwill, P. W., Scott, G. C., Stang, P. P., & Conolly, S. M. (2009). “Narrowband magnetic particle imaging.” Medical Imaging, IEEE Transactions on, 28(8), 1231-1237.
3. Goodwill, Patrick W., and Steven M. Conolly. "The x-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation." Medical Imaging, IEEE Transactions on 29.11 (2010): 1851-1859.
4. Goodwill, P. W., Tamrazian, A., Croft, L. R., Lu, C. D., Johnson, E. M., Pidaparthi, R., ... & Conolly, S. M. (2011). “Ferrohydrodynamic relaxometry for magnetic particle imaging.” Applied Physics Letters, 98(26), 262502-262502.
5. Goodwill, P. W., & Conolly, S. M. (2011). “Multidimensional x-space magnetic particle imaging.” Medical Imaging, IEEE Transactions on, 30(9), 1581-1590.
6. Goodwill, Patrick W., et al. "An x-space magnetic particle imaging scanner." Review of Scientific Instruments 83.3 (2012): 033708-033708.
7. Kratz, H., Eberbeck, D., Wagner, S., Schnorr, J., & Taupitz, M. (2012). “Tracer Development for Magnetic Particle Imaging.“ In Magnetic Particle Imaging (pp. 123-127). Springer Berlin Heidelberg.
8. Weizenecker, J., Gleich, B., Rahmer, J., Dahnke, H., & Borgert, J. (2009). “Three-dimensional real-time in vivo magnetic particle imaging.” Physics in medicine and biology, 54(5), L1.
9. Graeser, M., Biederer, S., Grüttner, M., Wojtczyk, H., Sattel, T. F., Tenner, W., ... & Buzug, T. M. (2012). “Determination of System Functions for Magnetic Particle Imaging. In Magnetic Particle Imaging (pp. 59-64).” Springer Berlin Heidelberg.
10. Knopp, T., Sattel, T. F., Biederer, S., Rahmer, J., Weizenecker, J., Gleich, B., ... & Buzug, T. M. (2010). “Model-based reconstruction for magnetic particle imaging.” Medical Imaging, IEEE Transactions on, 29(1), 12-18.
11. Knopp, T., Biederer, S., Sattel, T. F., Rahmer, J., Weizenecker, J., Gleich, B., ... & Buzug, T. M. (2010). “2D model-based reconstruction for magnetic particle imaging.” Medical physics, 37, 485.
12. Biederer, S., Sattel, T., Knopp, T., Lüdtke-Buzug, K., Gleich, B., Weizenecker, J., ... & Buzug, T. M. (2009, January). “A spectrometer for magnetic particle imaging.” In 4th European Conference of the International Federation for Medical and Biological Engineering (pp. 2313-2316). Springer Berlin Heidelberg.
13. Rahmer, J., Weizenecker, J., Gleich, B., & Borgert, J. (2009). Signal encoding in magnetic particle imaging: properties of the system function. BMC medical imaging, 9(1), 4.
14. 顏雅侖,錳鋅鐵氧化物磁性流體之製備及分散研究,國立台灣成功大學資訊工程研究所碩士論文(2002)
15. 磁性奈米粒子於生物醫學上之應用,物理雙月刊(廿八卷四期)2006年8月692
16. 陳泂翰,磁流體交流磁化率隨頻率變化之研究,國立台灣師範大學光電科技研究所碩士論文(2009)
17. Li, A.H. (2007). “ Using Infrared Thermal Image in the Evaluation of Carotid Stenosis” (Doctoral dissertation).
18. Brody, W.R. (1982). “Digital subtraction angiography.” Nuclear Science, IEEE Transactions on, 29(3), 1176-1180.
19. Gleich, B., Weizenecker, J., & Borget, J.(2008). “Experimental results on fast 2D-encoded magnetic particle Imaging.” Physics in medicine and biology, 53(6), N81.
20. Bean, C. P., & Livingston, J. D. (1959). “Superparamagnetism. Journal of Applied Physics”, 30(4), S120-S129.
21. Edelman, R. R., & Warach, S. (1993). Magnetic resonance imaging New England Journal of Medicine, 328(10), 708-716
22. Bulte, J. W., Walczak, P., Gleich, B., Weizenecker, J., Markov, D. E., Aerts, H. C., …& Kuhn, M. (2011, March). “MPI cell tracking: what can we learn from MRI?”. In SPIE Medicine Imaging (pp. 79650Z-79650Z). International Society for Optics and Photonics.
23. Bulte, J. W. M., Walczak, P., Bernard, S., Gleich, B., Weizenecker, J., Borgert, J., … & Boeve, H. (2010). “Developimg cellular MPI: initial experience.” In Magnetic Nanoparticles: Particle Science, Imaging Technology, and Clinical Applications: Proceedings of the First International Workshop on Magnetic Particle Imaging (p. 201). World Scientific.
24. Wojtczyk, H., Haegele, J., Gruttner, M., Tenner, W., Bringout, G., Graeser, M., … & Buzug, T. M. (2010). Visualization of Instruments in interventional Magnetic Particle Imaging (iMPI): A Simulation Study on SPIO Labelings. In Magnetic Particle Imaging(pp. 167-172). Springer Berlin Heidelberg.
25. Saburo Tanaka, H Fujita, Y Hatsukade, T Nagaishi, K Nishi, H Ota, T.Otani and S.Suzuki “A food contaminant detection system based on high-Tc SQUIDs” Supercond. Sci. Technol. 19 (2006) S280–S283
26. M Liebl, U Steinhoff, F Wiekhorst, J Haueisen and L Trahms “Quantitative imaging of magnetic nanoparticles by magnetorelaxometry with multiple excitation coils” Phys. Med. Biol. 59 (2014) 6607–6620
27. Yi Zhang, Hayaki Murata, Yoshimi Hatsukade, and Saburo Tanaka “Superparamagnetic nanoparticle detection using second harmonic of magnetization response” Review of Scientific Instruments 84, 094702 (2013); doi: 10.1063/1.4820447
28. 楊謝樂“高靈敏度磁減量生醫檢測原理及應用” 台灣磁性技術協會會訊 51 期 APR 2010