研究生: |
蔡孟憲 Tsai, Meng-Shian |
---|---|
論文名稱: |
還原氧化石墨烯奈米複合材料之製備與化學偵測 Fabrication of nanocomposite materials based on reduced graphene oxide and their applications in chemical sensing |
指導教授: |
呂家榮
Lu, Chia-Jung |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 154 |
中文關鍵詞: | 氧化石墨烯 、石墨烯複合材料 、奈米粒子 、一步合成 、氣體感測 、電化學感測 、濕度感測 |
英文關鍵詞: | Graphene, Graphene composite materials, Nanoparticles, One-step synthesis, Gas sensing, Electrochemical sensing, Humidity sensing |
DOI URL: | http://doi.org/10.6345/NTNU202100331 |
論文種類: | 學術論文 |
相關次數: | 點閱:240 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為因應目前感測器低成本、微小化、便於攜帶、穿戴式以及可即時監控的發展趨勢,本研究開發一系列簡易且低成本之方式合成還原氧化石墨烯 (reduced graphene oxide, RGO) 為主體的奈米複合材料,在氧化石墨烯結合有機或無機材料並與觸媒奈米粒子綴合的反應過程中,同時將其進行還原,以一步化合成多元還原氧化石墨烯奈米複合材料,並探討這些複合材料於感測方面之相關應用。
依所合成之石墨烯複合材料以及分析物的不同,研究之內容可分為三大部份,第一為應用石墨烯所具有的電催化特性以及表面高活性位點,製備為可同時檢測苯二酚同分異構物之電化學感測器,第二及第三部分則是透過石墨烯本身的高機械強度以及高導電性,發展為可撓性濕度感測元件以及高靈敏性的NH3感測元件。
第一部分的實驗設計是利用多元醇法 (polyol synthesis) 結合有機金屬裂解法 (Metal Organic Decomposition, MOD),以簡易且低成本的方式一步化合成金奈米粒子/還原型氧化石墨烯/三氧化鎢 (AuNPs/RGO/WO3) 三元奈米複合材料,並將此材料製備為AuNPs/RGO/WO/GCE電化學感測元件,提供了能有效區別並快速檢測hydroquinone (HQ) 以及catechol (CC) 混合樣品之感測平台。材料中RGO與AuNPs的高導電性與電催化活性,能顯著提升以Cyclic Voltammetry (CV)和Differential Pulse Voltammetry (DPV) 檢測HQ以及CC之靈敏度與選擇性,且提供新的電子傳導途徑,有效地改變材料中電子之傳遞能力,進一步增進元件的感測特性,而在真實環境下檢測HQ和CC,此元件依然具備良好的定性與定量之能力,其RSD分別為85%~111%和89%~119%,證實開發此感測材料對於HQ以及CC之實際檢測具有一定的應用價值。
而實驗第二部分為利用高分子單體化學氧化聚合為導電高分子而同時進行還原作用的方式,設計出Pt/polythiophene/RGO阻抗式濕度感測元件,此感測元件以RGO和polythiophene所具有高比表面積、高導電性以及Pt粒子所提供的電子傳導路徑等性質,將有效提高對於濕度之感測特性,此外藉由RGO具有高機械強度以及高可撓之特性,所製備之感測元件可撓性極佳,對於發展為穿戴式感測材料有極大之潛力。
第三部分為以簡易且一步化之方式合成Au/polythiophene/RGO、Ag/polythiophene/RGO、Pd/polythiophene/RGO以及Pt/polythiophene/RGO奈米複合材料並應用於NH3氣體之檢測,探討不同金屬觸媒前驅物對於材料整體合成之影響,並分析這些奈米複合材料對NH3感測之差異性,由特性分析結果可知, Au/polythiophene/RGO及Ag/polythiophene/RGO奈米複合材料,觸媒還原比率以及polythiophene聚合程度皆較高,因此具有較低的電阻值,而因觸媒的催化能力以及π-πstacking電荷載子快速傳遞的效應,Au/polythiophene/RGO以及Ag/polythiophene/RGO感測元件對NH3氣體也具有較為優異的感測特性,對NH3氣體有極快的反應速度並可適用低濃度 (200 ppb) 之檢測,如若有類似第二部分元件之可撓性,於氣體之檢測應用上便具有極大的發展潛力。
This dissertation proposes a series of simple and low-cost routes to efficiently synthesize reduced graphene oxide (RGO)-based nanocomposite materials along with the inexorable developments of cost-effective, miniaturized, portable, wearable and real-time monitoring of sensors. Graphene oxide reacted with organic or inorganic materials and combined with various nanoparticles to synthesize nanocomposite materials by one-pot methods in which the electrons was provided to reduce simultaneously the graphene oxide. The sensing-related applications of the nanocomposite materials based RGO was discussed more fully in this research.
According to the different fabrication of nanocomposite materials or detection of analytes, the content of this discuss was divided into four themes. First, through strong electrocatalytic activity and abundant active binding sites on the surface of RGO, a highly selectivity electrochemical sensor for simultaneously quantifying benzenediol isomers was successfully fabricated. Subsequently, the growth of the extremely flexible humidity sensor and the highly sensitive NH3 sensor based on RGO nanocomposite materials, attributing to strong mechanical strength and high conductivity of graphene. Finally, the hydrophilicity of the functional groups on graphene oxide is used to improve the humidity sensing characteristics of lanthanide oxides.
First, the experimental design employed the polyol method combined with Metal Organic Decomposition (MOD) with the features of simple and low-cost to synthesize gold nanoparticles/reduced graphene oxide/tungsten oxide (AuNPs/RGO/WO3) ternary nanocomposite material, which as the sensing material and was coated on a glass carbon elerton to fabricate the AuNPs/RGO/WO3/GCE electrochemical sensor. The sensor can used as a sensing platform, revealing the ability of quickly detected and effectively distinguished the mixed samples containing hydroquinone (HQ) and catechol (CC). For the detection of HQ and CC, the RGO and AuNPs not only supplied high conductivity and powerful electrocatalytic activity to significantly enhanced the sensitivity and selectivity but also provided the new electronic conduction paths to obviously ameliorate the sensing capabilities of the AuNPs/RGO/WO3/GCE electrochemical sensor. In addition, the electrochemical sensor still maintained excellent qualitative and quantitative analysis for the detection of HQ and CC in the presence of river water. As a result, the detection of HQ and CC in real environment successfully stride forward by the development of AuNPs/RGO/WO3 nanocomposite material.
In the second experiment, a facile and low cost one-pot method was applied in the synthesis of Pt/polythiophene/RGO nanocomposite material to produce the impedance humidity sensor. 2-thiophene methanol (2-TPM) reacted with PtCl42 ions via oxidative polymerization process and released electrons to simultaneously reduce PtCl42 ions and GO to Pt nanoparticles and RGO, respectively, affording high conductivity and large specific surface area by RGO and polythiophenethe, as well as conduction pathways by Pt nanoparticles, effectively improved the electrical and humidity-sensing performance of the humidity sensor. Furthermore, a polyethylene terephthalate (PET) substrate have been modified by the Pt/polythiophene/RGO nanocomposite, forming a humidity sensor with remarkable flexiblity due to the the intrinsic mechanical strength and flexibility of RGO. This results also demonstrated that the Pt/polythiophene/RGO nanocomposite material possess significant potential for the development of wearable sensors.
The third part is to synthesize Au/polythiophene/RGO, Ag/polythiophene/RGO, Pd/polythiophene/RGO and Pt/polythiophene/RGO nanocomposites materials by using a simple one-step method and these nanocomposites materials were employed as sensing films for detecting the NH3 gas in the experiment. The influence of the catalyst precursor on the synthesis of these nanocomposites materials were investigated. The results presented that Au/polythiophene/RGO and Ag/polythiophene/RGO nanocomposites materials prossess lower resistance due to the catalyst precursor has a higher ratio of reduction and the polythiophene has a great degree of polymerization. However, the catalytic of metal catalysts surface and the rapid transfer of charge carriers by π-π stacking greatly contribute to the Au/polythiophene/RGO and Ag/polythiophene/RGO sensors possess excellent sesing performance on NH3 gas. The sensors have superior response time and can used for the detection of low concentration NH3 gas (200 ppb) . The sensors will have greater development potential if it can flexibility.
[1] E.L. Que, D.W. Domaille, C.J. Chang, Metals in Neurobiology: Probing Their Chemistry and Biology with Molecular Imaging, Chem. Rev. 108 (2008) 1517-1549.
[2] P.G. Georgopoulos, A. Roy, M.J. Yonone-Lioy, R.E. Opiekun, P.J.J. Lioy, Environmental copper: Its dynamics and human exposure issues, J. Toxicol. Environ. Health B: Crit. Rev. 4 (2001) 341-394.
[3] G. Eranna, B.C. Joshi, D.P. Runthala, R.P. Gupta, Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review, Crit. Rev. Solid State Mater. Sci. 29: 3-4 (2010) 111-188.
[4] J.Q. Qiao, N. Yuan, C.J. Tang, J. Yang, J. Zhou, H.Z. Lian, L. Dong, Determination of catalytic oxidation products of phenol by RP-HPLC, Res. Chem. Intermed. 38 (2019) 549-558.
[5] P. Vandenabeele, H.G.M. Edwards, J. Jehlicka, The role of mobileinstrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics, Chem. Soc. Rev. 43 (2014) 2628-2649.
[6] P. Basilicata, M. Pieri, V. Settembre, A. Galdiero, E. Della Casa, A. Acampora, N. Miraglia, Screening of several drugs of abuse in italian workplace drug testing:performance comparisons of on-site screening tests and a fluorescencepolarization immunoassay-Based device, Anal. Chem. 83 (2011) 8566-8574.
[7] S. Kapitany, D. Nagy, J. Posta, A. Beni, Determination of atmospheric sulphur dioxide and sulphuric acid traces by indirect flame atomic absorption method, Microchem. J. (2020) in Press.
[8] Y. Zhang, B.R. Bunes, N. Wu, A. Ansari, S. Rajabali, L. Zang, Sensing methamphetamine with chemiresistive sensors based on polythiophene-blended single-walled carbon nanotubes, Sens. Actuators B Chem. 255 (2018) 1814-1818.
[9] V.C. Goncalves, D.T. Balogh, Optical chemical sensors using polythiophene derivatives as active layer for detection of volatile organic compounds, Sens. Actuators B Chem. 162 (2012) 307-312.
[10] B. M. Kulwicki, Humidity Sensors, J. Am. Ceram. Soc. 74 (1991) 697-708.
[11] F. Palmisano, P.G. Zambonin, D. Centonze, Amperometric biosensors based on electrosynthesised polymeric films, Fresenius J. Anal. Chem. 366 (2000) 586-601
[12] G.S. Wilson, R. Gifford, Review Biosensors for real-time in vivo measurements, Biosens. Bioelectron. 20 (2005) 2388-2403.
[13] L. Su, W. Jia, C. Hou, Y. Lei, Microbial biosensors: A review, Biosens. Bioelectron. 26 (2011) 1788-1799.
[14] V.E. Bochenkov, G.B. SergeeV, Sensitivity, Selectivity, and Stability of Gas-Sensitive Metal-Oxide Nanostructures, American Scientific Publishers, (2010) 31-52.
[15] P. Gründler, Chemical Sensors: An Introduction for Scientists and Engineers, Springer, Berlin, 2007.
[16] M.A. Najeeb, Z. Ahmad, R.A. Shakoor, Organic thin-film capacitive and resistive humidity sensors: a focus review, Adv. Mater. Interfaces 5 (2018) 1-19.
[17] H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review, Sensors 14 (2014) 7881-7939.
[18] F. Liao, M.F. Toney, V. Subramanian, Thickness changes in polythiophene gas sensors exposed to vapor, Sens. Actuators B Chem. 148 (2010) 74-80.
[19] N. Cheng, D. Du, X. Wang, D. Liu, W. Xu, Y. Luo, Y. Lin, Recent advances in biosensors for detecting cancer-derived exosomes, Trends Biotechnol. 37 (2019) 1236-1254.
[20] Y.B. Hahn, R. Ahmad, N. Tripathy, Chemical and biological sensors based on metal oxide nanostructures, Chem. Comm. 48 (2012) 10369-10385.
[21] J. He, P. Xiao, J. Shi, Y. Liang, W. Lu, Y. Chen, W. Wang, P. Théato, S.W. Kuo, T. Chen, High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction, Chem. Mater. 30 (2018) 4343-4354
[22] D.M. Wilson, S. Hoyt, J. Janata, K. Booksh, L. Obando, Chemical sensors for portable, handheld field instruments, IEEE Sens. J. 1 (2001) 256-274.
[23] C. Cochrane, C. Hertleer, A. Schwarz-Pfeiffer, Smart textiles in health: an overview. In: Koncar Vladan, editor. Smart textiles and their applications 178 (2016) 9-32.
[24] H.W. Kroto, J.R Heath, S.C. Obrien, R.F. Curl, R.E. Smalley, C-60 –Buckminsterfullerene, Nature 318 (1985) 162-163.
[25] S. Iijima, Helical Microtubules of Graphitic Carbon, Nature 354 (1991) 56-58.
[26] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-191.
[27] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306 (2004) 666-669.
[28] M. Gocyla, M. Pisarek, M. Holdynski, M. Opallo, Electrochemical detection of graphene oxide, Electrochem. Commun. 96 (2018) 77-82.
[29] S. Kumar, S.D. Bukkitgar, S. Singh, V. Singh, K.R. Reddy, N.P. Shetti, C. Venkata Reddy, V. Sadhu, S. Naveen, Electrochemical Sensors and Biosensors Based on Graphene Functionalized with Metal Oxide Nanostructures for Healthcare Applications, Chemistry Select 4 (2019) 5322-5337.
[30] E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: Fundamentals and applications, MRS bulletin 37 (2012) 1273-1281.
[31] A. Mehmood, N.M. Mubarak, M. Khalid, R. Walvekar, E.C. Abdullah, M.T.H Siddiqui, H.A. Baloch, S. Nizamuddin, S. Mazari, Graphene based nanomaterials for strain sensor application a review, J. Environ. Chem. Eng. 8 (2020) 103743.
[32] R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, A. Geim, Fine structure constant defines visual transparency of graphene, Science 320 (2008) 1308.
[33] H. Yan, X. Tao, Z. Yang, K. Li, H. Yang, A. Li, R. Cheng, Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue, J. Hazard. Mater. 268 (2014) 191-198.
[34] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L.
Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (2008) 351-355.
[35] A.H. Castro Neto, A.K. Novoselov, Two-Dimensional Crystals: Beyond Graphene, Mater. Express 1 (2011) 10-17.
[36] S.K. Banerjee, L.F. Register, E. Tutuc, D. Reddy, A.H. MacDonald, A Proposed New Logic Device Bilayer PseudoSpin Field-Effect Transistor (BiSFET): A Proposed New Logic Device, IEEE Electron device letters 30 (2009) 158-160.
[37] R. Arsat, M. Breedon, M. Shafiel, P.G. Spizziri, S. Gilje, R.B. Kaner, K. Kalantarsadeh, W. Wlodarski, Graphene-like nano-sheets for surface acoustic wave gas sensor applications, Chem. Phys. Lett. 467 (2009) 344-347.
[38] F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat. Mater 6 (2007) 652-655.
[39] Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, P.
Avouris, 100-GHz Transistors from Wafer-Scale Epitaxial Graphene, Science 327 (2010) 662.
[40] J.K. Lee, K.B. Smith, C.M. Hayner, H.H. Kung, Silicon nanoparticles–graphene paper composites for Li ion battery anodes, Chem. Commun. 46 (2010) 2025-2027.
[41] T.A. Saleh, G. Fadillah, Recent trends in the design of chemical sensors based on graphene-metal oxide nanocomposites for the analysis of toxic species and biomolecules, Trends Anal. Chem. 120 (2019) Article 115660.
[42] Y. Zhou, G. Liu, X. Zhu, Y. Guo, Cu2O quantum dots modified by RGO nanosheets for ultrasensitive and selective NO2 gas detection, Ceram. Int. 43 (2017) 8372-8377.
[43] A.I. Ayesh, R.E. Ahmed, M.A. Al-Rashid, R.A. Alarrouqi, B. Saleh, T. Abdulrehman, Y. Haik, L.A. Al-Sulaiti, Selective gas sensors using graphene and CuO nanorods, Sens. Actuator A Phys. 283 (2018) 107-112.
[44] T. Kamal, High performance NiO decorated graphene as a potential H2 gas sensor, J. Alloys Compd. 729 (2017) 1058-1063.
[45] Y. Seekaew, A. Wisitsoraat, D. Phokharatkul, C. Wongchoosuk, Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures, Sens. Actuators B Chem. 279 (2019) 69-78.
[46] Y. Lu, X. Liang, J. Xu, Z. Zhao, G. Tian, Synthesis of CuZrO3 nanocomposites/graphene and their application in modified electrodes for the co-detection of trace Pb(II) and Cd(II), Sens. Actuators B Chem. 273 (2018) 1146-1155.
[47] S. Lee, J. Oh, D. Kim, Y. Piao, A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions, Talanta 160 (2016) 528-536.
[48] J. Hao, L. Ji, K. Wu, N. Yang, Electrochemistry of ZnO@reduced graphene oxides, Carbon 130 (2018) 480-486.
[49] K.K. Reza, M.A. Ali, S. Srivastava,V.V. Agrawal, A.M. Biradar, Tyrosinase conjugated reduced graphene oxide based biointerface for bisphenol A sensor, Biosens. Bioelectron. 74 (2015) 644-651.
[50] K. Yang, Z. Li, Y. Lv, C. Yu, P. Wang, X. Su, L. Wu, Y. He, Graphene and AuNPs based electrochemical aptasensor for ultrasensitive detection of hydroxylated polychlorinated biphenyl, Anal. Chim. Acta 1041 (2018) 94-101.
[51] M.L. Yola, Electrochemical activity enhancement of monodisperse boron nitride quantum dots on graphene oxide: Its application for simultaneous detection of organophosphate pesticides in real samples, J. Mol. Liq. 277 (2019) 50-57.
[52] S.K. Ponnaiah, P. Prakash, B. Vellaichamy, A new analytical device incorporating a nitrogen doped lanthanum metal oxide with reduced graphene oxide sheets for paracetamol sensing, Ultrason. Sonochem. 44 (2018) 196-203.
[53] L. Huang, Y. Cao, D. Diao, Electrochemical activation of graphene sheets embedded carbon films for high sensitivity simultaneous determination of hydroquinone, catechol and resorcinol, Sens. Actuators B Chem. 305 (2020) Article 127495.
[54] J. Yang, Q. Lin, W. Yin, T. Jiang, D. Zhao, L. Jiang, A novel nonenzymatic glucose sensor based on functionalized PDDA-graphene/CuO nanocomposites, Sensors Actuators B Chem. 253 (2017) 1087-1095.
[55] Q. He, J. Liu, X. Liu, G. Li, D. Chen, P. Deng, J. Liang, A promising sensing platform toward dopamine using MnO2 nanowires/electro-reduced graphene oxide composites, Electrochimica Acta 296 (2019) 683-692.
[56] H.T. Chou, C.Y. Fu, C.Y. Lee, N.H. Tai, H.Y. Chang, An ultrasensitive sandwich type electrochemiluminescence immunosensor for triiodothyronine detection using silver nanoparticle-decorated graphene oxide as a nanocarrier, Biosens. Bioelectron. 71 (2015) 476-482.
[57] F.A. Harraz, M. Faisal, A.A. Ismail, S.A. Al-Sayari, A.E. Al-Salami, A. Al-Hajry
, M.S. Al-Assiri, TiO2/reduced graphene oxide nanocomposite as efficient ascorbic acid amperometric sensor, J. Electroanal. Chem. 832 (2019) 225-232.
[58] J.J. Park, W.J. Hyun, S.C. Mun, Y.T. Park, O.O. Park, Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring, ACS Appl. Mater. interfaces 7 (2015) 6317-6324.
[59] Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, Y. Zhang, Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity, ACS Nano 12 (2018) 2346-2354.
[60] S. Lu, S. Wang, G. Wang, J. Ma, X. Wang, H. Tang, X. Yang, Wearable graphene film strain sensors encapsulated with nylon fabric for human motion monitoring, Sens. Actuators A Phys. 295 (2019) 200-209.
[61] X. Xuan, H.S. Yoon, J.Y. Park, A Wearable Electrochemical Glucose Sensor based on Simple and Low-Cost Fabrication Supported Micro-Patterned Reduced Graphene Oxide Nanocomposite Electrode on Flexible Substrate, Biosens. Bioelectron. 30 (2018) 75-82.
[62] K.S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K.S. Kim, J.-H. Ahn, P.Kim, J.-Y. Choi, B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706-710.
[63] C. Berger, Z. Song, X.Li, X. Wu, N. Brown, C.C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N, W.A.d. Heer, Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science 312 (2006) 1191-1196.
[64] W.S Hummers, R.E Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80 (1958) 1339-1339.
[65] M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-warthan, W. Tremel, Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications, J. Mater. Chem. A 3 (2015) 18753
[66] H.C. Schniepp, J.L. Li, M.J McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide, J. Phys. Chem. B 110 (2006) 8535-8539.
[67] P.H. Hsu, P.G. Hatcher, New evidence for covalent coupling of peptides to humic acids based on 2D NMR spectroscopy: A means for preservation, Geochim. Cosmochim. Acta 69 (2005) 4521-4533.
[68] C.T. Ho, Phenolic compounds in food and their effects on health II Chapter 1, ACS Symposium Series 507 (1992) 2-7.
[69] T. Xie, Q. Liu, Y. Shi, Q. Liu, Simultaneous determination of positional isomers of benzenediols by capillary zone electrophoresis with square wave amperometric detection, J. Chromatogr. A 1109 (2006) 317-321
[70] H. Wang, Q. Hu, Y. Meng, Z. Jin, Z. Fang, Q. Fu, W. Gao, L. Xu, Y. Song, F. Lu, Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode, J. Hazard. Mater. 353 (2018) 151-157.
[71] C. Li, W. Liu, Y. Gu, S. Hao, X. Yan, Z. Zhang, M. Yang, Simultaneous determination of catechol and hydroquinone based on poly (sulfosalicylic acid)/functionalized graphene modified electrode, J. Appl. Electrochem. 44 (2014) 1059-1067.
[72] J. He, R. Qiu, W. Li, S. Xing, Z. Song, Q. Li, S. Zhang, A voltammetric sensor based on eosin Y film modified glassy carbon electrode for simultaneous determination of hydroquinone and catechol, Anal. Methods 6 (2014) 6494-6503.
[73] S. Feng, Y. Zhang, Y. Zhong, Y. Li, S. Li, Simultaneous determination of hydroquinone and catechol using covalent layer-by-layer self-assembly of carboxylated-MWNTs, J. Electroanal. Chem. 733 (2014) 1-5.
[74] X. Li, G. Xu, X. Jiang, J. Tao, Highly sensitive and simultaneous determination of hydroquinone and catechol at thionine/graphene oxide modified glassy carbon electrodes, J. Electrochem. Soc. 161 (2014) H464–H468.
[75] D. Song, J. Xia, F. Zhang, S. Bi, W. Xiang, Z. Wang, L. Xia, Y. Xia, Y. Li, L. Xia, Multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-graphene hybrid composite film for simultaneous determination of catechol and hydroquinone, Sens. Actuators B Chem. 206 (2015) 111-118.
[76] A. Anil Kumar, B.E. Kumara Swamy, T. Shobha Rani, P.S. Ganesh, Y.P. Raj, Voltammetric determination of catechol and hydroquinone at poly(murexide) modified glassy carbon electrode, Mater. Sci. Eng. C 98 (2019) 746-752.
[77] G.H. Zhao, M.F. Li, Z.H. Hu, H.X. Li, T.C. Cao, Electrocatalytic redox of hydroquinone by two forms of l-Proline, J. Mol. Catal. B: Chem. 255 (2006) 86-91.
[78] S. Palanisamy, K. Thangavelu, S.M. Chen, B. Thirumalraj, X.H. Liu, Preparation andcharacterization of gold nanoparticles decorated on graphene oxide@polydopamine composite: application for sensitive and low potential detection of catechol, Sens. Actuators B Chem. 233 (2016) 298-306.
[79] Y. Zhou, W. Tang, F. Dang, S. Chai, L. Zhang, Electrochemical characterization of poly (beryllon II) modified carbon paste electrode and its application to selective determination of pyrocatechol and hydroquinone, Colloids Surf. B 118 (2014) 148-153.
[80] K.V. Harisha, B.E.K. Swamy, E.E. Ebenso, Poly (glycine) modified carbon paste electrode for simultaneous determination of catechol and hydroquinone: a voltammetric study, J. Electroanal. Chem. 823 (2018) 730-736.
[81] P. Nagaraja, R.A. Vasantha, K.R. Sunitha, A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations, Talanta 55 (2001) 1039-1046.
[82] B.L. Lee, H.Y. Ong, C.Y. Shi, C.N. Ong, Simultaneous determination of hydroquinone, catechol and phenol in urine using high-performance liquid chromatography with fluorimetric detection, J. Chromatogr. B Biomed. Sci. Appl. 619 (1993) 259-266.
[83] L.J. Zhao, B.Q. Lv, H.Y. Yuan, Z.D. Zhou, D. Xiao, A sensitive chemiluminescence method for determination of hydroquinone and catechol, Sensors 7 (2007) 578-588.
[84] S. K. Patil, S.A. Patil, M.M. Vadiyar, D.V. Awale, A.S. Sartape, L.S. Walekar, G.B. Kolekar, U.V. Ghorpade, J.H. Kim, S.S. Kolekar, Tailor-made dicationic ionic liquid as a fluorescent sensor for detection of hydroquinone and catechol, J. Mol. Liq. 244 (2017) 39-45.
[85] H. Yang, J. Zha, P. Zhang, Y. Qin, T. Chen, F. Ye, Fabrication of CeVO4 as nanozyme for facile colorimetric discrimination of hydroquinone from resorcinol and catechol, Sens. Actuators B Chem. 247 (2017) 469-478.
[86] M. Shen, Z. Zhang, Y. Ding, Synthesizing NiAl-layered double hydroxide microspheres with hierarchical structure and electrochemical detection of hydroquinone and catechol, Microchem. J. 124 (2016) 209-214.
[87] J. Ma, J. Zhang, S. Wang, T. Wang, J. Lian, X. Duan, W. Zheng, Topochemical Preparation of WO3 Nanoplates through Precursor H2WO4 and Their Gas-Sensing Performances, J. Phys. Chem. C 115 (2011) 181157-181163.
[88] J. Qin, M. Cao, N. Li, C. Hu, Graphene-wrapped WO3nanoparticles with improved performances in electrical conductivity and gas sensing properties, J. Mater. Chem. 21 (2011) 17167-17174.
[89] J. Zhang, H. Lu, C. Yan, Z. Yang, G. Zhu, J. Gao, F. Yin, C. Wang, Fabrication of conductive graphene oxide-WO3 composite nanofibers by electrospinning and their enhanced acetone gas sensing properties, Sens. Actuators B Chem. 264 (2018) 128-138.
[90] C. Feldmann, Polyol mediated synthesis of oxide particle supensions and their application, Scr. Mater. 44 (2001) 2193-2196.
[91] C. Feldmann, C. Metzmacher, Polyol mediated synthesis of MS particles (M=Zn, Cd, Hg), J. Mater. Chem. 11 (2001) 2603-2606.
[92] C. Feldmann, Poly-mediated synthesis of nanoscale functional materials, Adv. Funct. Mater. 2 (2003) 101-107.
[93] P.G. Su, S.L. Peng, Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films, Talanta 132 (2015) 398-405.
[94] A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri, I. Dékány, Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids, Langmuir 19 (2003) 6050-6055.
[95] S. Liu, J. Q. Tian, L. Wang, X. P. Sun, A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection, Carbon 49 (2011) 3158-3164.
[96] Y. Qu, Q. Sun, F. Xiao, G. Shi , L. Jin, Layer-by-Layer self-assembled acetylcholinesterase/PAMAM-Au on CNTs modified electrode for sensing pesticides, Bioelectrochemistry 77 (2010) 139-144.
[97] R.R. Dutta, P. Puzarin, Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode, Biosens. Bioelectron. 52 (2014) 166-172.
[98] X. Yuan, D. Yuan, F. Zeng, W. Zou, F. Tzorbatzoglou, P. Tsiakaras, Y. Wang, Preparation of graphitic mesoporous carbon for the simultaneous detection of hydroquinone and catechol, Appl. Catal. B 129 (2013) 367-374.
[99] H. Jiang, S. Wang, W. Deng, Y. Zhang, Y. Tan, Q. Xie, M. Ming, Graphene-like carbon nanosheets as a new electrode material for electrochemical determination of hydroquinone and catechol, Talanta 164 (2017) 300-306.
[100] K.J. Huang, L. Wang, Y.J. Liu, T. Gan, Y.M. Liu, L.L. Wang, Y. Fan, Synthesis and electrochemical performances of layered tungsten sulfide-graphene nanocomposite as a sensing platform for catechol, resorcinol and hydroquinone, Electrochim. Acta 107 (2013) 379-387.
[101] W. Zhang, J. Zheng, Z. Lin, L. Zhong, J. Shi, C. Wei, H. Zhang, A. Hao, S. Hu, Highly sensitive simultaneous electrochemical determination of hydroquinone, catechol and resorcinol based on carbon dot/reduced graphene oxide composite modified electrodes, Anal. Meth. 7 (2015) 6089-6094.
[102] H. Mao, M. Liu, Z. Cao, C. Ji, Y. Sun, D. Liu, S. Wu, Y. Zhang, X.M. Song, Poly(4-vinylphenylboronic acid) functionalized polypyrrole/graphene oxide nanosheets for simultaneous electrochemical determination of catechol and hydroquinone, Appl. Surf. Sci. 420 (2017) 594-605.
[103] Y. Chen, X. Liu, S. Zhang, L. Yang, M. Liu,, Y. Zhang, S. Yao, Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite, Electrochim. Acta 231 (2017) 677-685.
[104] H.L. Guo, S. Peng, J.H. Xu, Y.Q. Zhao, X. Kang, Highly stable pyridinic nitrogen doped graphene modified electrode in simultaneous determination of hydroquinone and catechol, Sens. Actuators B Chem. 193 (2014) 623-629.
[105] Q. Chen, X. Li, X. Min, D. Cheng, J. Zhou, Y. Li, Z. Xie, P. Liu, W. Cai, C. Zhang, Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode, J. Electroanal. Chem. 789 (2017) 114-122.
[106] A. Sun, Z. Li, T. Wei, Y. Li, P. Cui, Highly sensitive humidity sensor at low humidity based on thequaternized polypyrrole composite film, Sens. Actuators B chem. 142 (2009) 197-203.
[107] S.E. Bae, K.J. Kim, Y.K. Hwang, S. Huh, Simple preparation of Pd-NP/polythiophene nanospheres for heterogeneous catalysis, J. Colloid Interface Sci. 456 (2015) 93-99.
[108] P.G. Su, L.Y. Yang, NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature, Sens. Actuators B Chem. 223 (2016) 202-208.
[109] P.G. Su, W.L. Shiu, M.S. Tsai, Flexible humidity sensor based on Au nanoparticles/graphene oxide/thiolated silica sol-gel film, Sens. Actuators B Chem. 216 (2015) 467-475.
[110] P.G. Su, C.C. Shiu, Electrical and sensing properties of a flexible humidity sensor made of polyamidoamine dendrimer-Au nanoparticles, Sens. Actuators B Chem. 165 (2012) 151-156.
[111] P.G. Su, H.C. Hsu, C.Y. Liu, Layer-by-layer anchoring of copolymer of methylmethacrylate and [3-(methacrylamino) propyl] trimethyl ammonium chlorideto gold surface on flexible substrate for sensing humidity, Sens. Actuators B Chem. 178 (2013) 289-295.
[112] P.G. Su, C.F. Chiou, Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate, Sens. Actuators B Chem. 200 (2014) 9-18.
[113] P.G. Su, W.C. Li, J.Y. Tseng, C.J. Ho, Fully transparent and flexible humidity sensors fabricated by layer-by-layer self-assembly of thin film of poly(2-acrylamido-2-methylpropane sulfonate) and its salt complex, Sens. Actuators B Chem. 153 (2011) 29-36.
[114] P.G. Su, L.N. Huang, Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films, Sens. Actuator B Chem. 123 (2007) 501-507.
[115] C.D. Feng, S.L. Sun, H. Wang, C.U. Segre, J.R. Stetter, Humidity sensing properties of Nafion and solgel derived SiO2/Nafion composite thin films, Sens. Actuators B Chem. 40 (1997) 217-222.
[116] G. Casalbore-Miceli, M.J. Yang, N. Camaioni, C.M. Mari, Y. Li, H. Sun, M. Ling, Investigations on the ion transport mechanism in conduction polymer films, Solid State Ionics 131 (2000) 311-321.
[117] J. Wang, B.K. Xu, S.P. Ruan, S.P. Wang, Preparation and electrical properties of humidity sensing films of BaTiO3/polystrene sulfonic sodium, Mater. Chem. Phys. 78 (2003) 746-750.
[118] A. Fuerte, R.X. Valenzuela, M.J. Escudero, L. Daza, Ammonia as efficient fuel for SOFC, J. Power Sources 192 (2009) 170–174.
[119] M. Comotti, S. Frigo, Hydrogen generation system for ammonia-hydrogen fuelled internal combustion engines, Int. J. Hydrogen Energy 40 (2015) 10673–10686.
[120] G.K. Mani, J.B.B. Rayappan, Selective detection of ammonia using spray pyrolysis deposited pure and nickel doped ZnO thin films, Appl. Surf. Sci. 311 (2014) 405–412.
[121] R. Lan, J.T.S. Irvine, S. Tao, Ammonia and related chemicals as potential indirect hydrogen storage materials, Int. J. Hydrogen Energy 37 (2012) 1482–1494.
[122] L. Zhang, W. Yang, Direct ammonia solid oxide fuel cell based on thin protonconducting electrolyte, J. Power Sources 179 (2008) 92–95.
[123] S. Giddey, S.P.S. Badwal, A. Kulkarni, Review of electrochemical ammonia production technologies and materials, Int. J. Hydrogen Energy 38 (2013) 14576–14594.
[124] B. Timmer, W. Olthuis, A. Van Den Berg, Ammonia sensors and their applications - a review, Sensor. Actuator. B Chem. 107 (2005) 666–677.
[125] G.K. Mani, J.B.B. Rayappan, A highly selective and wide range ammonia sensor - nanostructured ZnO:Co thin film, Mater. Sci. Eng. B 191 (2015) 41–50.
[126] V. Talwar, O. Singh, R.C. Singh, ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor, Sensor. Actuator. B Chem. 191 (2014) 276–282.
[127] C.A. Skjøth, C. Geels, The effect of climate and climate change on ammonia emissions in Europe, Atmos. Chem. Phys. 13 (2013) 117–128.
[128] M.A. Sutton, J.W. Erisman, F. Dentener, D. Möller, Ammonia in the environment: from ancient times to the present, Environ. Pollut. 156 (2008) 583–604
[129] N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Flame-spray-made undoped zinc oxide films for gas sensing applications, Sensors 10 (2010) 7863–7873.
[130] S.J. Kim, I.S. Hwang, Y.C. Kang, J.H. Lee, Design of selective gas sensors using additive-loaded In2O3 hollow spheres prepared by combinatorial hydrothermal reactions, Sensors 11 (2011) 10603–1061.
[131] I.C. Chen, S.S. Lin, T.J. Lin, C.L. Hsu, T.J. Hsueh, T.Y. Shieh, The assessment for sensitivity of a NO2 gas sensor with ZnGa2O4/ZnO core-shell nanowires-a novel approach, Sensors 10 (2010) 3057–3072.
[132] J. Huang, J. Wang, C. Gu, K. Yu, F. Meng, J. Liu, A novel highly sensitive gas ionization sensor for ammonia detection, Sensor. Actuator. A Phys. 150 (2009) 218–223.
[133] Y.M. Zhao, Y.Q. Zhu, Room temperature ammonia sensing properties of W18O49 nanowires, Sensor. Actuator. B Chem. 137 (2009) 27–31.
[134] G. Wang, Y. Ji, X. Huang, X. Yang, P.I. Gouma, M. Dudley, Fabrication and characterization of polycrysAline WO3 nanofibers and their application for ammonia sensing, J. Phys. Chem. B 110 (2006) 23777–23782.
[135] L. Wang, Z. Lou, R. Zhang, T. Zhou, J. Deng, T. Zhang, Hybrid Co3O4/SnO2 coreshell nanospheres as real-time rapid-response sensors for ammonia gas, ACS Appl. Mater. Interfaces 8 (2016) 6539–6545.
[136] Z. Du, C. Li, L. Li, H. Yu, Y. Wang, T. Wang, Ammonia gas detection based on polyaniline nanofibers coated on interdigitated array electrodes, J. Mater. Sci. Mater. Electron. 22 (2011) 418–421.
[137] A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R.F. Curl, Application of quantum cascade lasers to trace gas analysis, Appl. Phys. B Laser Opt. 90 (2008) 165–176.
[138] G. Wysocki, R.F. Curl, F.K. Tittel, R. Maulini, J.M. Bulliard, J. Faist, Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications, Appl. Phys. B Laser Opt. 81 (2005) 769–777.
[139] D.J. Miller, K. Sun, L. Tao, M.A. Khan, M.A. Zondlo, Open-path, quantum cascade laser-based sensor for high-resolution atmospheric ammonia measurements, Atmos. Meas. Tech. 7 (2014) 81–93.
[140] D. Kwak, Y. Leic, R. Maric, Ammonia gas sensors: A comprehensive review, Talanta 204 (2019) 713-730.
[141] J.J. Miasik, A. Hooper, B.C. Tofield, Conducting polymer gas sensors, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 82 (1986) 1117-1126.
[142] J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensors, Nat. Mater. 2 (2002) 19-24.
[143] R. Balint, N.J. Cassidy, S.H. Cartmell, Conductive polymers: towards a smart biomaterial for tissue engineering, Acta Biomater. 10 (2014) 2341-2353.
[144] Y. Wang, W. Jia, T. Strout, Y. Ding, Y. Lei, Preparation, characterization and sensitive gas sensing of conductive core-sheath TiO2-PEDOT nanocables, Sensors 9 (2009) 6752–6763.
[145] R.S. Andre, J. Chen, D. Kwak, D.S. Correa, L.H.C. Mattoso, Y. Lei, A flexible and disposable poly(sodium 4-styrenesulfonate)/polyaniline coated glass microfiber paper for sensitive and selective detection of ammonia at room temperature, Synth. Met. 233 (2017) 22-27.
[146] C. Boehler, F. Oberueber, S. Schlabach, T. Stieglitz, M. Asplund, Long-term stable adhesion for conducting polymers in biomedical applications: IrOx and nanostructured platinum solve the chronic challenge, ACS Appl. Mater. Interf. 9 (2017) 189-197.
[147] R.S. Andre, D. Kwak, Q. Dong, W. Zhong, D.S. Correa, L.H.C. Mattoso, Y. Lei, Sensitive and selective NH3 monitoring at room temperature using ZnO ceramic nanofibers decorated with poly(Styrene sulfonate), Sensors 18 (2018) 1-13.
[148] N.V. Hieu, N.Q. Dung, P.D. Tam, T. Trung, N.D. Chien, Thin film polypyrrole/SWCNTs nanocomposites-based NH3 sensor operated at room temperature, Sens. Actuator. B Chem. 140 (2009) 500–507.
[149] G. Zamiri, A. S. M. A. Haseeb, Recent trends and developments in graphene/conducting polymer nanocomposites chemiresistive sensors, materials 13 (2020) 3311-3355.
[150] D. Galpaya, M. Wang, M. Liu, N. Motta, E. Waclawik, C. Yan, Recent advances in fabrication and characterization of graphene-polymer nanocomposites, Graphene 1 (2012) 30-49.
[151] H. Tai, X. Xu, Z. Ye, C. Liu, G. Xie, Y. Jiang, P–P heterojunction sensor of self-assembled polyaniline nano-thin film/microstructure silicon array for NH3 detection, Chem. Phys. Lett. 621 (2015) 58–64.
[152] W. Lei, W. Si, Y. Xu, Z. Gu, Q. Hao, Conducting polymer composites with graphene for use in chemical sensors and biosensors, Microchim. Acta 181 (2014) 707–722.
[153] A. Husain, S. Ahmad, F. Mohammad, Synthesis, characterisation and ethanol sensing application of polythiophene/graphene nanocomposite, Mater. Chem. Phys. 239 (2020) in press.
[154] S. Bai, J. Guo, J. Sun, P. Tang, A. Chen, R. Luo, D. Li, Enhancement of NO2 sensing performance at room temperature by graphene modified polythiophene, Ind. Eng. Chem. Res. 55 (2016) 5788-5794.
[155] D.W. Hatchett , R. Wijeratne, J.M. Kinyanjui, Reduction of PtCl26- and PtCl24- in polyaniline: Catalytic oxidation of methanol at morphologically different composites, J. Electroanal. Chem. 593 (2006) 203-210.
[156] M. Hasik, A. Bernasik, A. Adamczyk, G. Malata, K. Kowalski, J. Camra, Polypyrrole–palladium systems prepared in PdCl2 aqueous solutions, Eur. Polym. J. 39 (2003) 1669-1678.
[157] J.H. Hong,Y.K. Hwang, J.Y. Hong, H.J. Kim, S.J. Kim,Y.S. Wonc, S. Huh, Facile preparation of SERS-active nanogap-rich Au nanoleaves, Chem. Commun. 47 (2011) 6963-6965.
[158] H.S. Shin, S. Huh, Au/Au@Polythiophene core/shell nanospheres for heterogeneous catalysis of nitroarenes, A.C.S. Appl, Mater. Interfaces 4 (2012) 6324-6331.
[159] F. Kong, Y. Wang, J. Zhang, H. Xia, B. Zhu, Y. Wang, S. Wang, S. Wu, The preparation and gas sensitivity study of polythiophene/SnO2 composites, Mater. Sci. Eng. B 150 (2008) 6–11.
[160] H.T. Hiena, H.T. Giang, N.V. Hieuc, T. Trunga, C. V. Tuan, Elaboration of Pd-nanoparticle decorated polyaniline films for room temperature NH3 gas sensors, Sens. Actuator. B Chem. 249 (2017) 348-356.
[161] J. Suna, X. Shua, Y. Tiana, Z. Tongb, S. Baia, R. Luoa, D. Lia, C.C. Liu, Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature, Sens. Actuator. B Chem. 241 (2017) 658-664.
[162] P.G. Su, Z.H. Liao, Fabrication of a flexible single-yarn NH3 gas sensor by layer-by-layer self-assembly of graphene oxide, Mater. Chem. Phys. 224 (2019) 349-356.
[163] X. Chen, D.M. Li , S.F. Liang, S. Zhan, M. Liu, Gas sensing properties of surface acoustic wave NH3 gas sensor based on Pt doped polypyrrole sensitive film, Sens. Actuator. B Chem. 177 (2013) 364-369.