簡易檢索 / 詳目顯示

研究生: 李秉軒
Lee, Bing-Hsuan
論文名稱: 以「苯二噻吩」剛硬片段為共軛架橋之有機光敏染料與高效能染敏太陽能電池
Organic Sensitizers with a Rigid Benzodithiophene-Based Spacer for High-Performance Dye-Sensitized Solar Cells
指導教授: 林建村
Lin, Jiann-T'Suen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 104
中文關鍵詞: 染料敏化太陽能電池
DOI URL: https://doi.org/10.6345/NTNU202202947
論文種類: 學術論文
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用引入hexyl 或3,5-bis(hexyloxy)benzyl取代基之剛硬片段BDTD (benzo[1,2-b:6,5-b']dithiophene-4,5-dione),以及不同的芳香雜環片段(thiophene、4,4-dihexyl-4H-cyclopenta[1,2-b:5,4-b']dithiophene、dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2- d][1,2,3]triazole)作為雙極性非金屬系有機光敏染料之共軛架橋,以三苯胺作為電子與體、2-cyanoacrylic acid作為電子受體兼錨基,本研究成功開發出新穎的非金屬光敏化染料 (LBS系列染料)。本研究也對染料進行了光物理、電化學性質測量,以及製成染料敏化型太陽能電池進行測試,並搭配理論計算探討元件表現與染料分子之關聯性。
      LBS系列染料在416 nm到497 nm的光譜範圍有寬廣的吸收,且擁有不錯的消光係數,最高的消光係數達到~50900 M-1 cm-1。此外,延伸共軛長度可使染料吸光範圍紅位移。由於BDTD的共面性,染料分子在TiO2上有相當程度的J-型堆疊,使得分子的吸收延伸至較長的波段。在標準AM 1.5光照度下,LBS系列元件之光電轉換效率為3.93%−8.38%,最佳的LBS-4 (8.38%)已超過標準品N719元件(8.12%)。從IPCE光譜可以很清楚看出J-型堆疊對於光電流的增益有很重要的貢獻,若加入5 mM的共吸附劑 (CDCA) 適度抑制堆疊導致的激態分子淬息,但保存長波段的光吸收,可將效率更提升至9.11%。

    New metal-free dipolar sensitizers (LBS dyes) with a rigid segment containing hexyl or 3,5-bis(hexyloxy)benzyl substituents, benzo[1,2-b:6,5-b']dithiophene-4,5-dione (BDTD), and heteroaromatic segment such as thiophene, 4,4-dihexyl-4H-cyclopenta[1,2- b:5,4-b']dithiophene or dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-d][1,2,3]triazole as the π-conjugated spacer, triarylamine as the donor, and 2-cyanoacrylic acid as both the acceptor and anchor, have been synthesized and characterized. The photophysical and electrochemical properties were also carried out on these new dyes. Dye-sensitized solar cells (DSSCs) were fabricated using these dyes as the sensitizers, and relevant physical measurements were conducted. Theoretical computations were also used to correlate the cell performance with the molecular structure.
      The LBS sensitizers display broad absorption spectra covering the range of 416 to 497 nm, with the highest molar extinction coefficient up to ~50,900 M-1cm-1. Elongation of the conjugated spacer results in red shift of the asbsorption. The planarity nature of BDTD results in J-aggregation of the dyes on the TiO2 surface and extends the absorption to the longer wavelength region. The light-to-electricity conversion efficiencies of DSSCs fabricated range from 3.93 to 8.38% under simulated AM 1.5 G illumination, and the best cell efficiency (LBS-4) surpasses that (8.12%) of the standard DSSC based on N719 ((bis(tetrabutyl-ammonium)-cis-di(thiocyanato)-N,N'-bis(4-carboxylato-4'-carboxylic acid -2,2'-bipyridine)ruthenium(II)). The IPCE spectra clearly indicate that important contribution of J-aggregation of the dyes to the photocurrents. With addition of 5 mM of CDCA (chenodeoxycholic acid) as the coadsorbent to alleviate excited state quenching while retaining the gain at the longer wavelength region due to dye-aggregation, the best efficinecy was further boosted to 9.11%.

    Abstract i 摘要 ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章、緒論 1 1-1、前言 1 1-2、太陽能光譜介紹 1 1-3、太陽能電池介紹 3 1-3-1、矽晶類太陽能電池 4 1-3-2、化合物太陽能電池 5 1-3-3、有機染料太陽能電池 6 1-3-4、鈣鈦礦太陽能電池 (Perovskite Solar Cells) 10 1-3-5、量子點太陽能電池 (Quantum Dot Sensitized Solar Cells) 10 1-4、有機染料敏化太陽能電池 11 1-4-1、有機染料敏化太陽能電池元件組成 11 1-4-2、有機染料敏化太陽能電池運作機制 14 1-4-3、有機染料敏化太陽能電池參數介紹 16 1-5、研究動機 17 2-1、實驗儀器 21 2-2、實驗藥品 22 2-3、實驗步驟 23 第三章、結果與討論 47 3-1、LBS-1至LBS-5系列染料 47 3-1-1、化合物生成之關鍵反應 49 3-2、LBS-1至LBS-5系列染料之物理性質 52 3-2-1、光物理性質 52 3-2-2、電化學性質 56 3-3、LBS-1至LBS-5元件效率與相關量測之探討 59 3-3-1、LBS-1至LBS-5染料元件之效率表現探討 59 3-3-2、LBS-1至LBS-5染料元件之EIS性質探討 61 3-3-3、LBS-1至LBS-5染料元件之效率與共吸附劑 63 3-4、理論計算 65 第四章、結論 72 參考文獻 73 附錄 78

    1. H. Kallmans; M. Pope, “Photovoltaic effect in organic crystals”, J. Chem. Phys., 1958, 30, 585.
    2. M. A. Green; K. Emery; Y. Hishikawa; W. Warta; E. D. Dunlop, “Proceeding of the 21st IEEE Photovoltaic Specialists Conference”, Orlando, USA: IEEE Publication, 1990.
    3. D. M. Chapin; C. S. Fuller; G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys., 1954, 25, 676.
    4. K. Masuko; M. Shigematsu; T. Hashiguchi; D. Fujishima; M. Kai; N. Yoshimura; T. Yamaguchi; Y. Ichihashi; T. Mishima; N. Matsubara; T. T. Yamanishi; T. Takahama; M. Taguchi; E. Maruyama; S. Okamoto, “Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell”, IEEE J. Photovoltaics, 2014, 4, 1433.
    5. W. Deng; D. Chen; Z. Xiong; P. J. Verlinden; J. W. Dong; F. Ye; H. Li; H. J. Zhu; M. Zhong; Y. Yang; Y. F. Chen; Z. Q. Feng, “Altermatt P. 20.8% PERC solar cell on 156 mm x 156 mm p-type nulticrystalline silicon substrate”, IEEE J. Photovoltaics, 2016, 6, 3.
    6. T. Matsui; H. Sai; T. Suezaki; M. Matsumoto; K. Saito; I. Yoshida; M. Kondo, “Development of highly stable and efficient amorphous silicon based solar cells”, Proc. 28th European Photovoltaic Solar Energy Conference, 2013.
    7. 郭明村, 「薄膜太陽能電池發展近況」, 工業材料雜誌, 2003, 203, 138.
    8. National Renewable Energy Laboratory. NREL Best Research Cell Efficiencies Chart; http://www.nrel.gov/ncpv/images/efficiency_ chart.jpg.
    9. F. Hurd; R. Livingston, “The Quantum Yields of Some Dye-sensitized Photooxidations”, J. Phys. Chem., 1940, 44, 865.
    10. G. Oster; J. S. Bellin; R. W. Kinball; M. E. Scharder, “Dye Sensitized Photoöxidation”, J. Am. Chem. Soc., 1959, 81, 5095.
    11. H. Tsubomura; M. Mastsumumuera; Y. Nomura; T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature, 1976, 261, 402.
    12. B.O. Regan; M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 1991, 353, 737.
    13. M.K. Nazeeruddin; A. Key; I. Rodicio; R. Humphry-Baker; E. Mueller; P. Liska; N. Vlachopoulos; M.Graetzel, “Conversion of light to electricity bycis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes”, J. Am. Chem. Soc., 1993, 115, 6382.
    14. M. K. Nazeeruddin; F. D. Angelis; S. Fantacci; A. Selloni; G. Viscardi; P. Liska; S. Ito; B. Takeru; M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, J .Am. Chem. Soc., 2005, 127, 16835.
    15. M. K. Nazeeruddin;P. Péchy; T. Renouard; S. M. Zakeeruddin; R. Humphry-Baker; P. Comte; P. Liska; L. Cevey; E. Costa; V. Shklover; L. Spiccia; G. B. Deacon; C. A. Bignozzi; M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, J. Am. Chem. Soc., 2001, 123, 1613.
    16. P. Wang; S. M. Zakeeruddin; J. E. Moser; M. K. Nazeeruddin; T. Sekiguchi; M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte”, Nat. Mater., 2003, 2, 402.
    17. F. Gao; Y. Wang; D. Shi;J. Zhang; M.Wang; X. Jing; R. Humphry-Baker; P. Wang; S. M. Zakeeruddin; M. Grätzel, “Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells”, J. Am. Chem. Soc., 2008, 130, 10720.
    18. C. Y. Chen; M. Wang; J. Y. Li; N. Pootrakulchote; L. Alibabaei; C. Ngoc-le; J. D. Decoppet; J. H. Tsai; C. Grätzel; C. G. Wu; S. M. Zakeeruddin; M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells”, ACS Nano., 2009, 3, 3103.
    19. A. Yella; H. W. Lee; H. N. Tsao; C. Yi; A. K. Chandiran; M. K. Nazeeruddun; E.W. Diau; C. Y. Yeh; S. M. Zakeeruddin; M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency”, Science, 2011, 334, 629.
    20. S.Mathew; A. Yella; P. Gao; R. Humphry-Baker; B. F. Curchod; N. Ashari-Astani; I. Tavernelli; U. Rothlisberger; M. K. Nazeeruddin; M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers”, Nat. Chem., 2014, 6, 242.
    21. Z. Yao; H. Wu; Y. Li; J. Wang;J. Zhang;M. Zhang; Y. Guo; P. Wang, “Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity”, Energy Environ. Sci., 2015, 8, 3192.
    22. K. Kakiage; Y. Aoyama; T. Yano; K. Oya; J. I. Fujisawab; M. Hanaya, “Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes”, Chem. Commun., 2015, 51, 15894
    23. (a) A. R. bin Mohd Yusoff; M. K. Nazeeruddin, “Organic Halide Lead Pervoskites for Photovoltaic Applictions”, J. Phys. Chem. Lett., 2016, 7, 851. (b) H. Snaith, “Pervoskites: the Emergence of a New Era for Low-CostHigh-Efficiency Solar Cells”, J. Phys. Chem. Lett., 2013, 4, 3623.
    24. (a) G. H. Carey; A. L. Abdelhady; Z. Ning; S. M. Thon; O. M. Bakr; E. H. Sargent, “Colloidal Quantum Dot Solar Cells”, Chem. Rev., 2015, 115, 12732. (b) W. Li and X. Zhong, “Capping Ligand-Induced Self-Assembly for Quantum Dot Sensitized Solar Cells”, J. Phys. Chem. Lett., 2015, 6, 796. (c) J. Wang, Y. Li, Q. Shen; T. Izuishi; Z. Pan; K. Zhaoa and X. Zhong, “Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%”, J. Mater. Chem. A, 2016, 4, 877.
    25. J. Du; Z. Du; J. S. Hu; Z Pan; Q. Shen; J. Sun; D. Long; H. Dong; L. Sun; X. Zhong; L. J. Wan, “Zn-Cu-In-Se Quantum dot solar cells with a certified power conversion efficient of 11.6%”, J. Am. Chem. Soc, 2016, 138, 4201.
    26. N. Robertson, “Optimizing dyes for dye-sensitized solar cells”, Angew. Chem. Int. Ed., 2006, 45, 2338.
    27. Md. K. Nazeeruddin;R. Humphry-Baker; P. Liska; M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 2003, 107, 8981.
    28. J.S. Ni; J.H. You; W.I. Hung; W.S. Kao; H.H. Chou; J. T. Lin, “Organic dyes incorporating the dithieno[3′ ,2′ :3,4;2″ ,3″ :5,6]benzo[1,2-c]furazan moiety for dye-sensitized solar cells”, ACS Appl.Mater. Interfaces, 2014, 6, 22612.
    29. J. S. Ni; W. S. Kao; H. J. Chou; J. T. Lin, “Organic Dyes Incorporating the Dithieno[3,2-f:2′,3′-h]quinoxaline Moiety for Dye-Sensitized Solar Cells”, ChemSusChem,2015, 8, 2932.
    30. J. S. Ni; Y. C. Yen; J. T. Lin, “Organic sensitizers with a rigid dithionobenzotriazole-based spacer for high-performance dye-sensitized solar cells’’, J. Mater. Chem. A, 2016, 4, 6553.
    31. S. Chaurasia; J. T. Lin, “Metal-Free Sensitizers for Dye-Sensitized Solar Cells’’ Chem. Record, 2016, 16, 1311.
    32. A. F. Arroyave; C. A. Richard and J. R. Reynolds, “Efficient Synthesis of Benzo[1,2-b:6,5-b′]dithiophene-4,5-dione (BDTD) and its chemical transformations into precursors for π-conjugated materials”, Org. Lett., 2012, 14, 6138.
    33. N. Miyaura; K. Yamada; H. Suginome; A. Suzuki, “Novel and convenient method for the stereo- and regiospecific synthesis of conjugated alkadienes and alkenynes via the palladium-catalyzed cross-coupling reaction of 1-alkenylboranes with bromoalkenes and bromoalkynes”, J. Am. Chem. Soc., 1985, 107, 972.
    34. D. Milstein; J. K. Stille, “A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium”, J.Am.Chem.Soc., 1978, 100, 3636.
    35. O. Meth-Cohn; S. P. Stanforth, “The Vilsmeier-Haack reaction. In: Trost BM, Fleming I, eds. New York: Pergamon Press”, Comp. Org. Synth., 1991, 2, 777.
    36. E. Knoevenagel, “Condensation von Malonsäure mit aromatischen Aldehyden durch Ammoniak und Amine”, Ber. Dtsch. Chem. Ges., 1898, 31, 2596.
    37. P. Gao, H. N. Tsao, M. Grätzel, and M. K. Nazeeruddin, “Fine-tuning the Electronic Structure of Organic Dyes for Dye-Sensitized Solar Cells”, Org. Lett., 2012, 14, 4330.
    38. Y. Yang; Y. S. Yen; Y. C. Hsu, H. H. Chou, J. T. Lin, “Organic Dyes Incorporating the Dithieno[3,2-b:2′,3′-d]thiophene Moiety for Efficient Dye-Sensitized Solar CellsOrganic Dyes Incorporating the Dithieno[3,2-b:2′,3′-d]thiophene Moiety for Efficient Dye-Sensitized Solar Cells”, Org. Lett., 2010, 12, 16.
    39. S. L. Li; K. J. Jiang; K. F. Shao; L. M. Yang, “Novel organic dyes for efficient dye-sensitized solar cells”, Chem. Commun., 2006, 2792.
    40. K. Hara; T. Sato; R. Katoh; A. Furube; Y. Ohga; A. Shinpo; S. Suga; K. Sayama; H. Sugihara; H. Arakawa, “Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 2003, 107, 597.
    41. K. Hara; Y. Tachibana; Y. Ohga; A. Shinpo; S. Suga; K. Sayama; H. Sugihara; H. Arakawa, “ Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes”, Sol. Energy Mater. Sol. Cells, 2003, 77, 89.
    42. R. C. Hiborn, “Einstein coefficients, cross sections, f values, dipole moments, and all that”, Am. J. Phys., 1982, 50, 982.

    無法下載圖示 本全文未授權公開
    QR CODE