簡易檢索 / 詳目顯示

研究生: 庫瑪
Bhaath Kumar Villuri
論文名稱: Copper Catalyzed Cascade Approaches for the syntheses of diverse Heterocyclic compounds Using 2-halo benzamide and 2-halobenzylcyanide derivatives
Copper Catalyzed Cascade Approaches for the syntheses of diverse Heterocyclic compounds Using 2-halo benzamide and 2-halobenzylcyanide derivatives
指導教授: 姚清發
Yao, Ching-Fa
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 226
中文關鍵詞: 銅催化級聯吲哚異吲哚啉酮螺異吲哚啉酮 - 二氫吲哚苯並呋喃噁庚因爾曼偶聯氫化胺化奧卡邁克爾加成Knoevenagel縮合
英文關鍵詞: Knoevenagel condensation, Copper catalyzed, Cascade, Indoles, benzofurans, Oxepins, Ullmann coupling, Hydro amination, oxa-Michael addition
DOI URL: http://doi.org/10.6345/DIS.NTNU.DC.014.2018.B05
論文種類: 學術論文
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的內容分為三個部分(A,B和C部分),A部分包括介紹以及概論銅級聯催化反應,包含詳細討論級聯反應以及不同級聯反應。此次的的討論除了級聯反應部分,還包含不同的一個、兩個、三個甚至四個的新鍵。此外,還敘述了有趣的雜環銅催化級聯反應。B部分包含兩個部分。第一部分從文獻中利用2-鹵代苯甲酰胺衍生物合成多種雜環化合物。第二部分,從2-碘苯甲酰胺衍生物合成螺異吲哚啉酮 - 吲哚啉和1,2-二取代吲哚。最後,C部分有三個部分。第一部分文獻中利用2-鹵代芐基氰化物衍生物合成各種雜環化合物。第二部分中,敘述了利用銅催化級聯反應合成二苯並[1,8]萘啶衍生物。第三部分,敘述了利用銅催化級聯反應合成合成2-芳基-3-氰基苯並呋喃和二苯並[b,f]氧雜-10-甲腈衍生物。

    本文所敘述的銅催化級聯反應,利用2-鹵代苯甲酰胺和2-鹵代芐基氰化物合成多種雜環化合物,包含了1,2-二取代吲哚,2-鹵代苯甲酰胺和苯並呋喃取代的異吲哚啉酮和螺異吲哚啉酮衍生物,oxepin衍生物和和2-鹵代芐基氰化物取代的1,8-二氮雜萘衍生物 本篇合成雜環的反應為烏爾曼偶聯,Sonagashira偶聯,氫化胺化,氫化酰胺化,oxa-Michael加成,Knoevenagel縮合和氧化。

    The contents of this dissertation are divided into three Sections. (Section A, B & C). Section A includes introduction and overview on Copper catalyzed cascade reactions describing the detailed definitions of Cascade reactions and differentiation of cascade reactions. This section intern includes variety of copper catalyzed cascade reactions which involves the formation of two, three and four new bonds. A variety of interesting miscellaneous copper catalyzed cascade reactions was also described. Section B contains two parts. In part I, the syntheses of diverse heterocyclic compounds using 2-halobenzamide derivatives were compiled from the literature. In part II, the Syntheses of spiro isoindolinone-indolines and 1,2-disubstituted indoles from 2-iodobenzamide derivatives were described. Finally, Section C contains three parts. In part I, the syntheses of diverse heterocyclic compounds using 2-halobenzylcyanide derivatives were compiled from the literature. In part II, a copper catalyzed cascade approach for the synthesis of Dibenzo1,8-naphthyridine derivatives was described. In part III, copper catalyzed cascade approach for the synthesis of 2-Aryl-3-cyanobenzofurans and Dibenzo[b,f]oxepine-10-carbonitrile derivatives was described.

    The copper catalyzed cascade synthetic protocol described in this dissertation was applied to 2-halobenzamides and 2-halobenzylcyanides, respectively, to synthesize diverse heterocyclic compounds which includes 1,2- disubstituted Indoles, Isoindolinone derivatives and spiro isoindolinone-indoline derivatives with respect to 2-halobenzamides and benzofurans, oxepin derivatives and 1,8-naphthyridine derivatives with respect to 2-halobenzylcyanides. The reactions involved in this protocol for the syntheses of these heterocycles were Ullmann coupling, Sonagashira coupling, Hydro amination, Hydro amidation, Oxa-Michael addition, Knoevenagel condensation and oxidation.

    TABLE OF CONTENTS Page Abbreviations i-vi SYNOPSIS & ABSTRACT OF THE THESIS vii-x Section A AI. Introduction- Overview on Copper catalyzed cascade reactions 1-9 AII. Copper catalyzed cascade reactions producing multiple new bonds 1 AII.1. Copper catalyzed cascade reactions producing two new bonds 2 AII.2. Copper catalyzed cascade reactions producing three new bonds 4 AII.3. Copper catalyzed cascade reactions producing four new bonds 5 AII.4. Miscellaneous copper catalyzed cascade transformations 6 AII.5. References 8 Section B BI. Compilation of syntheses of diverse heterocyclic compounds using 2-halobenzamide derivatives 11-16 BI.1 References 15 BII. Synthesis of spiro isoindolinone-indolines and 1,2-disubstituted indoles from 2-iodobenzamide derivatives 17-47 BII.1 Introduction 17 BII.2 Results and discussion 19 BII.3 Conclusion 30 BII.4 Experimental Section 30 BII.5 References 45 Section C CI. Compilation of syntheses of diverse heterocyclic compounds using 2-halobenzylcyanide derivatives 49-50 CI.1 References 51 CII. A Copper Catalyzed Cascade Approach for the Synthesis of Dibenzo1,8-naphthyridine Derivatives 53-72 CII.1 Introduction 53 CII.2. Results and discussions 55 CII.3. Conclusion 63 CII.4. Experimental Section 63 CII.5. References 71 CIII. Copper Catalyzed Cascade Synthesis of 2-Aryl-3-cyanobenzofurans and Dibenzo[b,f]oxepine-10-carbonitrile Derivatives 73-86 CIII.1 Introduction 73 CIII.2. Results and discussions 74 CIII.3. Conclusion 79 CIII.4. Experimental Section 79 CIII.5. References 85 X-ray Crystallographic Data 87 1H and 13C NMR Spectral Copies 111 List of Publications 225

    AII.5 References
    (1) Cai, Q.; Li, Z.; Wei, J.; Fu, L.; Ha, C.; Pei, D.; Ding, K. Org. Lett., 2010, 12, 7.
    (2) Lu, J.; Fu, H. J. Org. Chem. 2011, 76, 4600.
    (3) Li, T. –R.; Lu, L. –Q.; Wang, Y. –N.; Wang, B. -C.; Xiao, W. –J.; Org. Lett. 2017, 19, 4098.
    (4) Jin, H.; Yang, Y.; Jia, J.; Yue, B.; Lang, B.; Weng. J. RSC Adv., 2014, 4, 26990.
    (5) Nayaka, M.; Batra, S. Adv. Synth. Catal. 2010, 352, 3431.
    (6) Reeves, J. T.; Fandrick, D. R.; Tan, Z.; Song, J. J.; Lee, H.; Yee, N. K.; Senanayake C. H. J. Org. Chem. 2010, 75, 992.
    (7) Huang, C.; Fu, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem. Commun., 2008, 6333.
    (8) An, J. Alper, H.; Beauchemin A. Org. Lett. 2016, 18, 3482.
    (9) Ma C, -L.; Zhao, J.-H.; Yang, Y.; Zhang, M.-K.; Shen, C.; Sheng, R.; Dong, X. –W.; Hu Y. –Z. Sci. Rep. 2017, 7, 16640.
    (10) Hao, W.; Sang, X.; Jiang, J.; Cai M. Tetrahedron Letters. 2016, 57,1511.
    (11) Cai, Q.; Yan, J.; Ding K. Org. Lett., 2012, 14, 13.
    (12) Jeyachandran, R.; Potukuchi, H. K.; Ackermann L. Beilstein J. Org. Chem. 2012, 8, 1771.
    (13) Liu, Z.; Zhu, D.; Luo, B.; Zhang, N.; Liu, Q.; Hu, Y.; Pi, R.; Huang, P.; Wen, S. Org. Lett. 2014, 16, 5600.
    (14) Kavala, V.; Yang, Z.; Konala, A.; Yang, T. -H.; Kuo, C. –W.; Ruan, J. –Y.; Yao C. –F. Eur. J. Org. Chem. 2018, 1241.
    (15) Wang, H.; Wang, C.; Huang, K.; Liu, L.; Chang, W.: Li J. Org. Lett. 2016, 18, 2367.
    (16) Singh, J. B.; Mishra, K.; Gupta T.; Singh R. M.; New J. Chem., 2018, 42, 3310.
    (17) Cheng, G.; Cui, X. Org. Lett., 2013, 15, 7.
    (18) Shen, W.-B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J. –Z.; Lu, X.: Ye L. –W.; Nat. Commun. 2017, 8, 1748.
    (19) Chen, Z.; Chen, J.; Liu, M.; Ding, J.; Gao, W.; Huang, X.; Wu H. J. Org. Chem. 2013, 78, 11342.
    (20) Wen, Q.; Lu P.; Y.; Wang. Chem. Commun., 2015, 51, 15378.

    BI.1 References
    (1) Balkrishna, S. J.; Bhakuni, B. S.; Chopra, D.; Kumar S. Org. Lett., 2010, 12, 23.
    (2) Li, T.; Yang, L.; Ni, K.; Shi, Z.; Li F.; Chen D. Org. Biomol. Chem., 2016, 14, 6297.
    (3) Wang, F.; Liu, H.; Fu, H.; Jiang, Y.; Zhao Y.; Org. Lett., 2009, 11, 11.
    (4) Lu, J.; Gong, X.; Yang H.; Fu, H. Chem. Commun., 2010, 46, 4172.
    (5) Li, L.; Wang, M.; Zhang, X.; Jiang, Y.; Ma, D. Org. Lett., 2009, 11, 6.
    (6) Lu, C.; Dubrovskiy, A. V.; Larock R. C. J. Org. Chem. 2012, 77, 8648.
    (7) Kitching, M. O.: Hurst, T. E.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 2925.
    (8) (a) Kotipalli, T.; Kavala, V.; Janreddy, D.; Kuo, C. –W.; Kuo, T. –S.; Huang, H. –N, He C. –H.; Yao C. –F. RSC Adv., 2014, 4, 2274. (b) Kotipalli, T.; Janreddy, D.; Kavala, V.; Kuo, C. –W.; Kuo, T. –S.; Chen, M. –L.; He C. –H.; Yao. C. –F. RSC Adv., 2014, 4, 47833.
    (9) Kotipalli, T.; Kavala, V.; Janreddy, D.; Bandi, V.; Kuo, C. –W.; Yao C. –F.; Eur. J. Org. Chem. 2016, 1182.
    (10) Kavala, V.; Janreddy, D.; Raihan, M. J.; Kuo, C. –W.; Ramesh, C.; Yao C. –F. Adv. Synth. Catal. 2012, 354, 2229.
    (11) Kavala, V.; Wang, C. –C.; Barange, D. K.; Kuo, C. –W.; Lei, P. –M.; Yao C. –F. J. Org. Chem. 2012, 77, 5022.
    (12) Kavala, V.; Yang, Z.; Konala, A.; Huang, C. –Y.; Kuo, C. –W.; Yao C. –F. J. Org. Chem. 2017, 82, 7280.
    (13) Gawande, S. D.; Kavala, V.; Zanwar, M. R.; Kuo, C. –W.; Huang, W. –C.; Kuo, T. –S.; Huang, H. –N.; He, C. –H.; Yao C. –F. Adv. Synth. Catal. 2014, 356, 2599.
    (14) Kavala, V.; Yang, Z.; Konala, A.; Huang, C. –Y.; Kuo, C. –W.; Yao C. –F. Eur. J. Org. Chem. 2018, 1241.
    (15) Gawande, S. D.; Zanwar, M. R.; Kavala, V.; Kuo, C. –W.; Rajawinslin, R. R.; Yao C. –F. Adv. Synth. Catal. 2015, 357, 168.

    BII.5 References
    1. D. Cheng, Y. Ishihara, B. Tan and C. F. Barbasc III, ACS Catal., 2014, 4, 743–762.
    2. (a) O. Panknin, S. Ring, S. Baurle, A. Wagenfeld, R. Nubbemeyer, K. Nowak-Reppel and G. Langer, US Pat., US20160052936, 2016; (b) J. Wendt, M. Cox, M. K. S. Sheehan, M. P. Curtis, T. Respondek, R. A. Ewin, G. M. Kyne and P. D. Johnson, World Patent, WO 2015100232 A3, 2015; (c) N. A. Powell, J. T. Kohrt, K. J. Filipski, M. Kaufman, D. Sheehan, J. E. Edmunds, A. Delaney, Y. Wang, F. Bourbonais, D.-Y. Lee, F. Schwende, F. Sun, P. McConnell, C. Catana, H. Chen, J. Ohren and L. A. Perrin, Bioorg. Med. Chem. Lett., 2012, 22, 190–193; (d) A. H. Abdel-Rahman, E. M. Keshk, M. A. Hanna and S. M. El-Bady, Bioorg. Med. Chem., 2004, 12, 2483–2488; (e) G. Irfime, P. M. Kazmaier, J. D. Mayo, P. F. Smith, I. Dorziotis, I. Houpis, A. Molina and R. Volante, World Patent, WO 1998018815 A1, 1998; (f) P. E. Maligres, I. Houpis, K. Rossen, A. Molina, J. Sager, V. Upadhyay, K. M. Wells, R. A. Reamer, J. E. Lynch, D. Askin, R. P. Volante and P. J. Reider, Tetrahedron, 1997, 53, 10983–10992.
    3. L.-P. Molleyres, J. Cassayre, F. Cederbaum and P. Maienfisch, World Patent, WO 2005061500 A1, 2005.
    4. (a) A. Mertens, H. Zilch, B. K¨onig, W. Schafer, T. Poll, W. Kampe, H. Seidel, U. Leser and H. Leinert, J. Med. Chem., 1993, 36, 2526; (b) J. Wrobel, A. Dietrich, S. A. Woolson, J. Millen, M. McCaleb, M. C. Harrison, T. C. Hohman, J. Sredy and D. Sullivan, J. Med. Chem., 1992, 35, 4613; (c) X. Bao, J. Shi, X. Nie, B. Zhou, X. Wang, L. Zhang, H. Liao and T. Peng, Bioorg. Med. Chem., 2014, 22, 4826.
    5. (a) Z.-Y. Tang and Q.-S. Hu, Adv. Synth. Catal., 2006, 348, 846– 850; (b) C. B. Lavery, R. McDonald and M. Stradiot-to, Chem. Commun., 2012, 7277; (c) Y. Zheng, J. Cleaveland, D. Richardson and Y. Yuan, Org. Lett., 2015, 17, 4240; (d) R. K. Nandi, R. Guillot, C. Kouklovsky and G. Vincent, Org. Lett., 2016, 18, 1716; (e) S. Karamthulla, S. Pal, M. N. Khan and L. H. Choudhury, RSC Adv., 2013, 3, 15576; (f) Q. Yin and S.-L. You, Org. Lett., 2013, 15, 4266.
    6. (a) X. Zhang, C. Yang, D. Z. Negrerie and Y. Du, Chem.–Eur. J., 2015, 21, 5193; (b) R. M. Letcher, N. C. Kwok, W. H. Lo and K. W. Ng, J. Chem. Soc., Perkin Trans. 1998,1, 1715; (c) J. L. Bullington and J. H. Dodd, J. Heterocycl. Chem., 1998, 35, 397.
    7. (a) D. Z. Yang, P. Wang, J. Z. Liu, H. L. Xing, Y. Liu, W. C. Xie and G. S. Zhao, Bioorg. Med. Chem., 2014, 22, 1850; (b) J. A. Sindac, S. J. Barraza, C. J. Dobry, J. Xiang, P. K. Blakely, D. N. Irani, R. F. Keep, D. J. Miller and S. D. Larsen, J. Med. Chem., 2013, 56, 9222; (c) L. D. Jennings, K. W. Foreman, T. S. Rush III, D. H. H. Tsao, L. Mosyak, S. L. Kincaid, M. N. Sukhdeo, A. G. Sutherland, W. Ding, C. H. Kenny, C. L. Sabus, H. Liu, E. G. Dushin, S. L. Moghazeh, P. Labthavikul, P. J. Petersen, M. Tuckman and A. V. Ruzin, Bioorg. Med. Chem., 2004, 12, 5115; (d) H. Matter, E. Defossa, U. Heinelt, P.-M. Blohm, D. Schneider, A. Muller, S. Herok, H. Schreuder, A. Liesum, V. Brachvogel, P. Lonze, A. Walser, F. Al-Obeidi and P. Wildgoose, J. Med. Chem., 2002, 45, 2749; (e) G. Tarzia, G. Diamantini, B. D. Giacomo and G. Spadoni, J. Med. Chem., 1997, 40, 2003.
    8. (a) C. B. Lavery, R. McDonald and M. Stradiotto, Chem. Commun., 2012, 48, 7277–7279; (b) J. Barluenga, A. Jim´enez-Aquino, C. Vald´es and F. Aznar, Angew. Chem., Int. Ed., 2007, 46, 1529–1532; (c) Y.-Q. Fang and M. Lautens, J. Org. Chem., 2008, 73, 538–549; (d) L. Ackermann, Org. Lett., 2005, 7, 439–442.
    9 (a) R. Dalpozzo, Chem. Soc. Rev., 2015, 44, 742; (b) H. Wu, Y. P. He and F. Shi, Synthesis, 2015, 47, 1990; (c) Y. C. Zhang, J. J. Zhao, F. Jiang, S. B. Sun and F. shi, Angew. Chem., Int. Ed., 2014, 53, 13912; (d) J. J. Zhao, S. B. Sun, S. H. He, Q. Wu and F. shi, Angew. Chem., Int. Ed., 2015, 54, 5460; (e) S. Dhiman and S. S. V. Ramasastry, Chem. Commun., 2015, 557; (f) Y. M. Wang, H. H. Zhang, C. Li, T. Fan and F. Shi, Chem. Commun., 2016, 1804; (g) R. Kancherla, T. Naveen and D. Maiti, Chem.–Eur. J., 2015, 21, 8723; (h) U. Sharma, R. Kancherla, T. Naveen, S. Agasti and D. Maiti, Angew. Chem., Int. Ed., 2014, 53, 11895.
    10 (a) L. T. Kaspar and L. Ackermann, Tetrahedron, 2005, 61, 11311–11316; (b) Y. H. Zhang, J. P. Donahue and C.-J. Li, Org. Lett., 2007, 9, 627; (c) R. Vicente, Org. Biomol. Chem., 2011, 6469.
    11 (a) Z. Gao, C. Wang, C. Yuan, L. Zhou, Y. Xiao and H. Guo, Chem. Commun., 2015, 51, 12653; (b) M. Yang, J. Tang and R. Fan, Chem. Commun., 2012, 48, 11775; (c) Y. Oda, K. Hirano, T. Satoh and M. Miura, Org. Lett., 2012, 14, 664; (d) J. Gao, Y. Shao, J. Zhu, J. Zhu, H. Mao, X. Wang and X. Lv, J. Org. Chem., 2014, 79, 9000.
    12. (a) V. Kavala, C.-C. Wang, D. K. Barange, C.-W. Kuo, P.-M. Lei and C.-F. Yao, J. Org. Chem., 2012, 77, 5022; (b) V. Kavala, D. Janreddy, M. J. Raihan, C.-W. Kuo, C. Ramesh and C.-F. Yao, Adv. Synth. Catal., 2012, 354, 2229; (c) T. Ko-tipalli, V. Kavala, D. Janreddy, C.-W. Kuo, T.-S. Kuo, H.-N. Huang, C.-H. He and C.-F. Yao, RSC Adv., 2014, 4, 2274; (d) V. Kavala, C.-C. Wang, Y.-H. Wang, C.-W. Kuo, D. Janreddy, W.-C. Huang, T.-S. Kuo, C.-H. He, M.-L. Chen and C.-F. Yao, Adv. Synth. Catal., 2014, 356, 2609; (e) S. D. Gawande, V. Kavala, M. R. Zanwar, C.-W. Kuo, W.-C. Huang, T.-S. Kuo, H.-N. Huang, C.-H. He and C.-F. Yao, Adv. Synth. Catal., 2014, 356, 2599; (f) S. D. Gawande, M. R. Zanwar, V. Kavala, C.-W. Kuo, R. R. Rajawinslin and C.-F. Yao, Adv. Synth. Catal., 2015, 357, 168; (g) T. Kotipalli, D. Janreddy, V. Kavala, V. Bandi, C.-W. Kuo and C.-F. Yao, Eur. J. Org. Chem., 2016, 1182.
    13 (a) T. Songsichan, J. Promsuk, V. Rukachaisirikul and J. Kaeobamrung, Org. Biomol. Chem., 2014, 12, 4571; (b) W. Xu, Y. Jin, H. Liu, Y. Jiang and H. Fu, Org. Lett., 2011, 13, 1274; (c) D. Chen, Q. Chen, M. Liu, S. Dai, L. Huang, J. Yang and W. Bao, Tetrahedron, 2013, 69, 6461; (d) D. Miao, X. Shi, G. He, Y. Tong, Z. Jiang and S. Han, Tetrahedron, 2015, 71, 431; (e) H. Tian, H. Qiao, C. Zhua and H. Fu, RSC Adv., 2014, 4, 2694; (f) T. Li, M. Chen, L. Yang, Z. Xiong, Y. Wang, F. Li and D. Chen, Tetrahedron, 2016, 72, 868.
    14 (a) L. Li, M. Wang, X. Zhang, Y. Jiang and D.-W. Ma, Org. Lett., 2009, 11, 1309; (b) J. Pan, Z. Xu, R. Zeng and J. Zou, Chin. J. Chem., 2013, 31, 1022; (c) S. Sarkar, R. Pal and A. K. Sen, Tetrahedron Lett., 2013, 54, 4273; (d) S. Sarkar, S. Dutta, R. Dey and S. Naskar, Tetrahedron Lett., 2012, 53, 6789; (e) A. Gogoi, S. Guin, S. K. Rout, G. Majji and B. K. Patel, RSC Adv., 2014, 4, 59902; (f) F. M. Irudayanathan, J. Noh, J. Choi and S. Lee, Adv. Synth. Catal., 2014, 356, 3433; (g) J. Dong, F. Wang and J. You, Org. Lett., 2014, 16, 2884; (h) S. B. Munoz, A. N. Aloia, A. K. Moore, A. Papp, T. Mathew, S. Fustero, G. A. Olah and G. K. Surya Prakash, Org. Biomol. Chem., 2016, 14, 85; (i) J. Pan, Z. Xu, R. Zeng and J. Zou, Chin. J. Chem., 2013, 31, 1022.

    CI.1 References
    (1) Baudoin, O.; Cesario, M.; Gue´nard, D.; Ritte F. G. J. Org. Chem. 2002, 67, 1199-1207.
    (2) (a) Wang, Y.; Chen, C.; Zhang, S.; Lou, Z.; Su, X.; Wen, L.; Li, M. Org. Lett., 2013, 15, 18. (b) Shen H.; Xie Z. J. Am. Chem. Soc. 2010, 132, 11473. (c) Chen, X.; He, Q.; Xie, Y.; Yang, C. Org. Biomol. Chem., 2013, 11, 2582.
    (3) Xia, G.; Han, X.; Lu X. Org. Lett. 2014, 16, 6184.
    (4) Hsieh, J. –C.; Cheng, A. –Y.; Fu J. –H.; Kang T. –W. Org. Biomol. Chem., 2012, 10, 6404.
    (5) Jiang, Z. –Q.; Miao, D.; Tong, Y.; Pan, Q.; Li, X.; Hu, R.; Han S. Synthesis 2015, 47 (13), 1913.
    (6) Larock, R. C.; Q.; Tian, A.; Pletnev A. J. Am. Chem. Soc. 1999, 121, 3238.

    CII.5 References
    [1] a) A. Madaan, R. Verma, V. Kumar, A. T. Singh, S. K. Jain, M. Jaggi. Arch. Pharm. Chem. Life Sci.2015, 348, 837. b) T. R. R. Naik, H. S. B. Naik, H. R. P. Naik, P. J. Bindu, B. G. Harish, V. Krishna. Medicinal Chemistry 2009, 5, 5.
    [2] a) Z. Li, M. Yu, L. Zhang, M. Yu, J. Liu, L. Wei, H. Zhang. Chem. Commun.2010, 46, 7169. b) K. Ghosh, T. Sen, R. Fröehlich. Tetrahedron Lett. 2007, 48, 2935. c) J. Fang, S. Selvi, J. Liao, Z. Slanina, C. Chen, P. Chou J. Am. Chem. Soc.2004, 126, 3559.
    [3] a) H. Misbahi, P. Brouant, A. Hever, A. M. Molnar, K. Wolfard, G. spengler, H. Mefetah, J. Molnar, J. Barbe. Anti-cancer Res. 2002, 22, 2097. b) S. Karra, Y. Xiao, X. Chen, L. Liu-Bujalski, B. Huck, A. Sutton, A. Goutopoulos, B. Askew, K. Josephson, X. Jiang, A. Shutes, V. Shankar, T.Noonan, G. Garcia-Berrios, R. Dong, M. Dhanabal, H. Tian, Z. Wang, A. Clark, S. Goodstal. Bioorg. Med. Chem. Lett. 2013, 23, 3081.
    [4] a) A. M. M. S. Kumar, B. V. Pandiyan, S. M. Roopan, S. P. Rajendrana. Journal of Photochemistry and Photobiology A: Chemistry. 2017, 332, 72. b) L. Fu, X. Feng, J. J. Wang, Z. Xun, J. J. Zhang, Y. W. Zhao, Z. B. Huang, D. Q. Shi. ACS Comb.Sci.2015, 17, 24. c) W. Tian, R. Yougnia, S. Depauw, A. Lansiaux, M. H. David Cordonnier, B. Pfeiffer, L. K. Berthier, S. Leonce, A. Pierre, H. Dufat, S. Michel. J. Med. Chem. 2014, 57, 10329. d) L. Fu, W. Lin, M. H. Hu, X. C. Liu, Z. B. Huang, D. Q. Shi. ACS Comb. Sci. 2014, 16, 238. e) Y. C. Zhang, Z. C. Liu, R. Yang, J. H. Zhang, S. J. Yan, J. Lin. Org. Biomol. Chem, 2013, 11, 7276.
    [5] L. R. Wen, C. Liu, M. Li, L. J. Wang. J. Org. Chem. 2010, 75, 7605.
    [6] a) L. F. Tietze. Chem. Rev. 1996, 96, 115. b) I. Dutta, A. Sarbajna, P. Pandey, S. M. W. Rahaman, K. Singh, J. K. Bera, Organometallics 2016, 35, 1505.
    [7] (a) C.-Y. Huang, V. Kavala, C.-W. Kuo, A. Konala, T. -H. Yang, C. -F. Yao. J. Org. Chem. 2017, 82, 1961.(b) S. S. Ichake, A. Konala, V. Kavala, C.-W. Kuo, C.-F. Yao Org. Lett., 2017, 19, 54. (c) B. K. Villuri, T. Kotipalli, V.Kavala, S. S. Ichake, V. Bandi, C.-W. Kuo C.-F. Yao RSC Adv. 2016, 6, 74845. (d) V. Kavala, C.-C. Wang, Y.-H. Wang, C.-W. Kuo, D. Janreddy, W. -C. Huang, T.-S. Kuo, C. H. He, M.-L. Chen, C.-F. Yao. Adv. Synth. Catal. 2014, 356, 2609. (e) V. Kavala, D. Janreddy, M. J. Raihan, C.-W. Kuo, C. Ramesh, C.-F. Yao Adv. Synth. Catal. 2012, 354, 2229.
    [8] H. Shen, Z. Xie, J. Am. Chem. Soc.2010, 132, 11473.
    [9] A. S.Demir, M. Emrullahoglu, K. Buran Chem. Commun. 2010, 46,8032.
    [10] a) R. Adepu, A. Rajitha, D. Ahuja, A. K. Sharma, B. Ramudu,R. Kapavarapu, K. V. L. Parsa and M. Pal Org. Bio-mol. Chem., 2014, 12, 2514. b) S. Huang, Y. Shao, L. Zhang, X. Zhou Angew. Chem.2015, 127, 14660.
    [11] See supporting information for further details. CCDC NO 3a 1540780, CCDC No 4a 1540779, CCDC NO 5a 1540781.
    [12] a) S. D. Gawande, V.Kavala, M.R. Zanwar, C.-W.Kuo,W.-C.Huang,T.-S.Kuo,H.-N.Huang,C.-H.He,C.-F. Yao,Adv. Synth. Catal. 2014, 356, 2599. b) F.-C. Jia, C. Xu, Q. Cai, A.–X. Wu Chem. Commun., 2014, 50, 9914. c) R. Adepu, R. Sunke, C.L.T. Meda, D. Rambabu, G.R. Krishna, C.M. Reddy, G.S. Deora, K.V.L. Parsa, M. Pal. Chem., Com-mun.,2013, 49, 190-192.
    [13] a) Z.-Q. Wang, W.-W. Zhang, L.-B. Gong, R.-Y. Tang, X.-H. Yang, Y. Liu, J.-H. Li Angew. Chem. Int. Ed.2011, 50, 8968–8973. b) K. K. Toh, S. Sanjaya, S. Sahnoun, S.Y. Chong, S. Chiba, Org. Lett. 2012, 9, 2290-2292. c) T. Hamada, X. Ye, S. S. Stahl J. Am. Chem. Soc. 2008, 130, 833.
    [14] a) S. Mori, M. Takubo, T. Yanase, T. Maegawa, Y. Manguchi, H. Sajiki. Adv. Synth. Catal. 2010, 352, 1630. b) A. Gao, F. Yang, J. Li, Y. Wu. Tetrahedron2012, 68, 4950. c) C. F. Xu, M. Xu, Y. X. Jia, C. Y. Li. Org. Lett.2011, 13, 1556. d) K. Sakthivel, K. Srinivasan. Org. Biomol. Chem, 2014, 12, 6440.
    [15] a) Q. Xing, H. Lv, C. Xia, F. Li. Chem. Commun. 2016, 52, 489. b) Y. Liu, F. Song, S. Guo J. Am. Chem. Soc. 2006, 128, 11332.

    CIII.5 References
    (1) Khanam, H.; Shamsuzzaman. Eur. J. Med. Chem. 2015, 97, 483.
    (2) Maring, C. J.; Pratt, J. K.; Carroll, W. A.; Liu, D.; Betebenner, D. A.; Hutchinson, D. K.; Tufano, M. D.; Rockway, T. W.; Schoen, U.; Pahl, A.; Witte, A. WO 2012/087833, 2012.
    (3) Peng, Z.; Huang, K.; Tao, Y.; Li, X.; Zhang, L.; Lu, P.; Wang, Y. Mater. Chem. Front. 2017, 1, 1858.
    (4) (a) Okamoto, K.; Watanabe, M.; Murai, M.; Hatano, R.; Ohe, K. Chem. Commun. 2012, 48, 3127. (b) Ding, S.; Jiao, N. J. Am. Chem. Soc. 2011, 133, 12374. (c) Okitsu, T.; Nakazawa, D.; Taniguchi, R.; Wada, A. Org. Lett. 2008, 10, 4967. (d) Swamy, N. K.; Yazici, A.; Pyne, S. G. J. Org. Chem. 2010, 75, 3412.
    (5) Shchekotikhin, A. E.; Shevtsova, E. K.; Traven, V. F. Russ. J. Org. Chem. 2007, 43, 1686.
    (6) Nematollahi, D.; Atlasi-Pak, A. R.; Esmaili, R. Helv. Chim.Acta 2012, 95, 1605.
    (7) Huang, X.-C.; Liu, Y.-L.; Liang, Y.; Pi, S.-F.; Wang, F.; Li, J.-H. Org. Lett. 2008, 10, 1525.
    (8) (a)Yuan, H.; Bi, K.-J.; Li, B.; Yue, R.-C.; Ye, J.; Shen, Y.-H.; Shan, L.; Sun, Y.; Zhang, W.-D. Org. Lett. 2013, 15, 4742. (b) Liang, Z.; Hou, W.; Du, Y.; Zhang, Y.; Pan, Y.; Mao, D.; Zhao, K. Org. Lett. 2009, 11, 4978. (12) Chen, C.; Dormer, P. G. J. Org. Chem. 2005, 70, 6964.
    (9) Wang, Y.; Zhou, C.; Wang, R.Green Chem. 2015, 17, 3910.
    (10) Li, B.; Zhang, B.; Zhang, X.; Fan, X. J. Org. Chem., 2016, 81, 9530.
    (11) (a) Zhang, L.; Peng, Z.; Wen, Q.; Li, X.; Lu, P.; Wang, Y. Org. Lett. 2016, 18, 728.(b) Zhou, W.; Zhang, Y.; Li, P.; Wang, L. Org. Biomol. Chem. 2012, 10, 7184. (c) Yuan, H.; Bi, K.-J.; Li, B.; Yue, R.-C.; Ye, J.; Shen, Y.-H.; Shan, L.; Sun, Y.; Zhang, W.-D. Org. Lett. 2013, 15, 4742.
    (12) (a) Kavala, V.; Yang, Z.; Konala, A.; Yang, T. –H.; Kuo, C. -W.; Ruan, J. –Y.; Yao, C. -F. Eur. J. Org. Chem. 2018, 1241. (b) Kavala, V.; Yang, Z.; Konala, A.; Huang, C. –Y.; Kuo, C. -W.; Yao, C. -F. J. Org. Chem. 2017, 82, 7280 (c) Villuri, B. K.; Konala, A.; Kavala, V.; Kotipalli, T.; Kuo, C. -W.; Yao, C. -F. Adv.Synth. Catal. 2017, 359, 3142.
    (13) (a)Wang, D.; Kuang, D.; Zhang, F.; Tang, S.; Jiang, W. Eur. J. Org. Chem. 2014, 315-318. (b)Xia, S.; Gan, L.; Wang, K.; Li, Z.; Ma, D. J.Am.Chem.Soc.2016, 138, 13493.
    (14) (a) Choi, Y. L.; Lim, H. S.; Lim, H. J.; Heo,J.-N. Org. Lett. 2012, 14, 5102 – 5105 (b) Wang, Y.; Chen, Y.; He, Q.; Xie, Y.; Yang, C.Helv.Chim.Acta,2013, 96, 296.

    無法下載圖示 本全文未授權公開
    QR CODE