研究生: |
曾瓈儀 Zeng, Li-Yi |
---|---|
論文名稱: |
以機器學習技術預測二級毒品緩起訴者甲基安非他命使用情形 Predicting Methamphetamine Use Among Deferred Prosecution Offenders of Schedule II Drugs Using Machine Learning |
指導教授: |
李思賢
Lee, Tony Szu-Hsien |
口試委員: |
李思賢
Lee, Tony Szu-Hsien 顧以謙 Ku, Yi-Chien 楊浩然 Yang, Hao-Jan |
口試日期: | 2025/01/03 |
學位類別: |
碩士 Master |
系所名稱: |
健康促進與衛生教育學系 Department of Health Promotion and Health Education |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 機器學習 、二級毒品 、緩起訴 、戒癮治療 、決策樹 、隨機森林 、支持向量機 |
英文關鍵詞: | Machine Learning, Schedule II Drugs, Deferred Prosecution, Addiction Treatment, Decision Tree, Random Forest, Support Vector Machine |
研究方法: | 次級資料分析 |
DOI URL: | http://doi.org/10.6345/NTNU202500447 |
論文種類: | 學術論文 |
相關次數: | 點閱:41 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Acion, L., Kelmansky, D., van der Laan, M., Sahker, E., Jones, D., & Arndt, S. (2017). Use of a machine learning framework to predict substance use disorder treatment success. PLoS ONE, 12(4), e0175383. https://doi.org/10.1371/journal.pone.0175383
Aljawarneh, S., Yassein, M. B., & Aljundi, M. (2019). An enhanced J48 classification algorithm for the anomaly intrusion detection systems. Cluster Computing, 22, 10549–10565. Scopus. https://doi.org/10.1007/s10586-017-1109-8
Baird, A., Cheng, Y., & Xia, Y. (2022). Use of machine learning to examine disparities in completion of substance use disorder treatment. PLOS ONE, 17(9), e0275054. https://doi.org/10.1371/journal.pone.0275054
Baird, A., Cheng, Y., & Xia, Y. (2023). Determinants of outpatient substance use disorder treatment length-of-stay and completion: The case of a treatment program in the southeast U.S. Scientific Reports, 13, 13961. https://doi.org/10.1038/s41598-023-41350-8
Bartholomew, K., & Horowitz, L. M. (1991). Attachment styles among young adults: A test of a four-category model. Journal of Personality and Social Psychology, 61(2), 226–244. https://doi.org/10.1037/0022-3514.61.2.226
Borrell-Carrió, F., Suchman, A. L., & Epstein, R. M. (2004). The Biopsychosocial Model 25 Years Later: Principles, Practice, and Scientific Inquiry. Annals of Family Medicine, 2(6), 576–582. https://doi.org/10.1370/afm.245
Chen, S.-Y., Tsai, Y.-S., Wu, Y.-H., Wang, S.-T., Kang, T.-W., & Tseng, C.-C. A. (2020). Betel-Nut Chewing Increases Difficulty in Tracheal Intubation. Asian Journal of Anesthesiology, 58(4), 138–145. https://doi.org/10.6859/aja.202012_58(4).0004
Chen, V. C.-H., Chen, H., Lin, T.-Y., Chou, H.-H., Lai, T.-J., Ferri, C. P., & Gossop, M. (2008). Severity of heroin dependence in Taiwan: Reliability and validity of the Chinese version of the Severity of Dependence Scale. Addictive Behaviors, 33(12), 1590–1593. https://doi.org/10.1016/j.addbeh.2008.06.001
Cheng, P., Li, Y., Wang, G., Dong, H., Liu, H., Shen, W., & Zhou, W. (2023). Aberrant topology of white matter networks in patients with methamphetamine dependence and its application in support vector machine-based classification. Scientific Reports, 13, 6958. https://doi.org/10.1038/s41598-023-33199-8
Chiang, H.-H., Chien, L.-H., Lin, J.-S., Yeh, Y.-H., & Lee, T. S.-H. (2013). Modeling psychological well-being and family relationships among retired older people in Taiwan. International Journal of Mental Health Nursing, 22(1), 93–101. https://doi.org/10.1111/j.1447-0349.2012.00840.x
Choi, J., Chung, J., & Choi, J. (2021). Exploring Impact of Marijuana (Cannabis) Abuse on Adults Using Machine Learning. International Journal of Environmental Research and Public Health, 18(19), 10357. https://doi.org/10.3390/ijerph181910357
Davis, J. P., Eddie, D., Prindle, J., Dworkin, E. R., Christie, N. C., Saba, S., DiGuiseppi, G. T., Clapp, J. D., & Kelly, J. F. (2021). Sex differences in factors predicting post-treatment opioid use. Addiction, 116(8), 2116–2126. Scopus. https://doi.org/10.1111/add.15396
Ellis, R. J., Wang, Z., Genes, N., & Ma’ayan, A. (2019). Predicting opioid dependence from electronic health records with machine learning. BioData Mining, 12(1), 3. https://doi.org/10.1186/s13040-019-0193-0
Engel, G. L. (1977). The need for a new medical model: A challenge for biomedicine. Science (New York, N.Y.), 196(4286), 129–136. https://doi.org/10.1126/science.847460
Frank, E., Hall, M. A., & Witten, I. H. (2016). The WEKA workbench. Online appendix for" Data mining: Practical machine learning tools and techniques".
Gosling, S. D., Rentfrow, P. J., & Swann, W. B. (2003). A very brief measure of the Big-Five personality domains. Journal of Research in Personality, 37(6), 504–528. https://doi.org/10.1016/S0092-6566(03)00046-1
Gossop, M., Darke, S., Griffiths, P., Hando, J., Powis, B., Hall, W., & Strang, J. (1995). The Severity of Dependence Scale (SDS): Psychometric properties of the SDS in English and Australian samples of heroin, cocaine and amphetamine users. Addiction, 90(5), 607–614. https://doi.org/10.1046/j.1360-0443.1995.9056072.x
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. SIGKDD Explor. Newsl., 11(1), 10–18. https://doi.org/10.1145/1656274.1656278
Hosni, M., Abnane, I., Idri, A., Carrillo de Gea, J. M., & Fernández Alemán, J. L. (2019). Reviewing ensemble classification methods in breast cancer. Computer Methods and Programs in Biomedicine, 177, 89–112. https://doi.org/10.1016/j.cmpb.2019.05.019
Ku, Y.-C., Chung, H.-P., Hsu, C.-Y., Cheng, Y.-H., Hsu, F. I.-C., Tsai, Y.-C., Chao, E., & Lee, T. S.-H. (2024). Recidivism of Individuals Who Completed Schedule I Drugs Deferred Prosecution Treatment: A Population-Based Follow-Up Study from 2008 to 2020 in Taiwan. International Journal of Mental Health and Addiction, 22(5), 3040–3059. https://doi.org/10.1007/s11469-023-01034-w
Kuo, C.-Y., Yu, L.-C., Chen, H.-C., & Chan, C.-L. (2018). Comparison of Models for the Prediction of Medical Costs of Spinal Fusion in Taiwan Diagnosis-Related Groups by Machine Learning Algorithms. Healthcare Informatics Research, 24(1), 29–37. https://doi.org/10.4258/hir.2018.24.1.29
Kusnanto, H., Agustian, D., & Hilmanto, D. (2018). Biopsychosocial model of illnesses in primary care: A hermeneutic literature review. Journal of Family Medicine and Primary Care, 7(3), 497–500. https://doi.org/10.4103/jfmpc.jfmpc_145_17
Lee, M.-B., Liao, S.-C., Lee, Y.-J., Wu, C.-H., Tseng, M.-C., Gau, S.-F., & Rau, C.-L. (2003). Development and Verification of Validity and Reliability of a Short Screening Instrument to Identify Psychiatric Morbidity. Journal of the Formosan Medical Association, 102(10), 687–694. https://doi.org/10.29828/JFMA.200310.0004
Li, C.-H., & Wu, J.-J. (2020). Psychometric evaluation of the Chinese Version of the Emotion Regulation Questionnaire in Taiwanese college students. Assessment, 27(6), 1300–1309. https://doi.org/10.1177/1073191118773875
Lichenstein, S. D., Kohler, R., Ye, F., Potenza, M. N., Kiluk, B., & Yip, S. W. (2023). Distinct neural networks predict cocaine versus cannabis treatment outcomes. Molecular Psychiatry, 28(8), 3365–3372. https://doi.org/10.1038/s41380-023-02120-0
Montiel Ishino, F. A., McNab, P. R., Gilreath, T., Salmeron, B., & Williams, F. (2020). A comprehensive multivariate model of biopsychosocial factors associated with opioid misuse and use disorder in a 2017–2018 United States national survey. BMC Public Health, 20, 1740. https://doi.org/10.1186/s12889-020-09856-2
Palechor, F. M., & Manotas, A. de la H. (2019). Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico. Data in Brief, 25, 104344. https://doi.org/10.1016/j.dib.2019.104344
Papadimitriou, G. (2017). The “Biopsychosocial Model”: 40 years of application in Psychiatry. Psychiatrike = Psychiatriki, 28(2), 107–110. https://doi.org/10.22365/jpsych.2017.282.107
Pickens, C. M., Jones, C. M., Guy, G. P., Dailey Govoni, T., & Green, J. L. (2023). Associations between prescription stimulant use as prescribed, nonmedical use, and illicit stimulant use among adults evaluated for substance use treatment, 2017-2021. Drug and Alcohol Dependence Reports, 7, 100153. https://doi.org/10.1016/j.dadr.2023.100153
Priyadarshinee, S., & Panda, M. (2022). Improving Prediction of Chronic Heart Failure using SMOTE and Machine Learning. 2022 Second International Conference on Computer Science, Engineering and Applications (ICCSEA), 1–6. https://doi.org/10.1109/ICCSEA54677.2022.9936470
Roberts, A. (2023). The biopsychosocial model: Its use and abuse. Medicine, Health Care, and Philosophy, 1–18. https://doi.org/10.1007/s11019-023-10150-2
Staiger, P. K., Liknaitzky, P., Lake, A. J., & Gruenert, S. (2020). Longitudinal Substance Use and Biopsychosocial Outcomes Following Therapeutic Community Treatment for Substance Dependence. Journal of Clinical Medicine, 9(1), 118. https://doi.org/10.3390/jcm9010118
Wiss, D. A. (2019). A Biopsychosocial Overview of the Opioid Crisis: Considering Nutrition and Gastrointestinal Health. Frontiers in Public Health, 7, 193. https://doi.org/10.3389/fpubh.2019.00193
Zimet, G. D., Dahlem, N. W., Zimet, S. G., & Farley, G. K. (1988). The Multidimensional Scale of Perceived Social Support. Journal of Personality Assessment, 52(1), 30–41. https://doi.org/10.1207/s15327752jpa5201_2
王雪芳(2015)。我國毒品緩起訴戒癮治療效益之探討[碩士論文,國立臺灣大學政治學系]。https://doi.org/10.6342/NTU.2015.01241
王雪芳、王宏文(2017)。臺灣接受毒品緩起訴戒癮治療者再犯罪之分析。犯罪與刑事司法研究,27,1–41。
朱春林、葉子榕、朱庭儀、劉乃瑛、陳婕依、劉宸宇(2023)。多元處遇戒癮治療之短期團體治療成效研究。矯政期刊,12(1),3–32。 https://doi.org/10.6905/JC.202301_12(1).0001
朱群芳、巫梓豪、李潼蕙、賴苓蕙(2019)。負面情緒、自我效能、治療同盟與同儕支持對毒癮戒治處遇效果影響程度之探討。藥物濫用防治,4(2),75–103。https://doi.org/10.6645/JSAR.201906_4(2).4
何玉娟、方素真、陳辭一、高君慈、黃正誼、洪嘉均(2022)。甲基安非他命藥癮者治療預後因子分析-緩起訴二級毒品附命戒癮治療相關因素及性別差異分析研究。中華心理衛生學刊,35(2),145–179。https://doi.org/10.30074/FJMH.202206_35(2).0003
李彥賢、賴家玄、蔡佳玲(2017)。以健保資料庫建構頭頸癌併發吸入性肺炎高風險病患之預測模式。資訊管理學報,24(3),341–367。
林承俊、胡雅涵(2017)。運用資料探勘技術建構植牙手術成敗之預測模型。醫學與健康期刊,6(2),57–69。
林耿樟、蔣馨怡、沈芸秀、蔡萱燁(2023)。緩起訴附命戒癮治療的中斷治療與成效評估指標。輔導季刊,59(4),71–85。
法務部司法官學院(2023)。中華民國111年犯罪狀況及其分析-2022犯罪趨勢關鍵報告。https://www.cprc.moj.gov.tw/1563/1590/1592/40644/
法務部法務統計資訊網。擷取自2024年12月12日,from https://www.rjsd.moj.gov.tw/RJSDWeb/common/WebList3.aspx?menu=INF_COMMON_C
馬瑞菊、林佩璇、林俊男、鄭婉如、李佳欣、蕭嘉瑩、蘇珉一(2020)。運用決策樹演算法於肝硬化重症病人死亡預測。數據分析。15(4),1–14。https://doi.org/10.6338/JDA.202008_15(4).0001
許華孚、賴擁連、黃俊能、陳佑杰、施柏州(2018)。成年犯罪人社區處遇效能之研究。刑事政策與犯罪防治研究專刊,19,56–71。https://doi.org/10.6460/CPCP.201812_(19).04
郭文正(2022)。戒治時期藥癮者戒癮改變動機之影響因素探討。矯政期刊,11(2),3–30。https://doi.org/10.6905/JC.202207_11(2).0001
陳振東、游惠君、陳筑卉、黃馨儀(2020)。應用機器學習演算法於乳癌資料分析之研究。管理資訊計算,9(2),129–138。https://doi.org/10.6285/MIC.202009_9(2).0011
黃俊棠、鍾志宏、彭瑋寧(2021)。機構戒癮處遇的回顧與前瞻。矯政期刊,10(1),97–124。https://doi.org/10.6905/JC.202101_10(1).0004
楊婉華、鄭春生(2021)。應用機器學習演算法建立貧血疾病之分類模型以提升醫療品質。品質學報,28(4),283–295。https://doi.org/10.6220/joq.202108_28(4).0004
楊冀華、林健陽、陳佑杰、陳玉書(2020)。毒品施用者司法處遇效能之定群研究。藥物濫用防治,5(2),55–88。https://doi.org/10.6645/JSAR.202006_5(2).3
劉宜姈、鍾俊華(2022)。新世代反毒策略行動綱領及其執行成效之探討。立法院全球資訊網。https://www.ly.gov.tw/Pages/ashx/File.ashx?FilePath=~/File/Attach/220335/File_19744648.pdf
劉振隆、李懿巡(2020)。以環境適應值為基礎之鯨魚演算法應用於肝病資料集分類。管理資訊計算,9,28–39。https://doi.org/10.6285/MIC.202008/SP_01_9.0004
蔡崇煌、翁紹仁、周駿安、吳信宏、洪偉展(2017)。運用C4.5決策樹分析失眠症狀。台灣公共衛生雜誌,36(5),449–460。 https://doi.org/10.6288/TJPH201736106055
蔡震邦(2023)。藥酒癮與心理疾病共病的評估診斷與處遇-從盛行率到矯正實務現況。矯政期刊,12(2),61–96。https://doi.org/10.6905/JC.202307_12(2).0003
鄭凱寶、黃宣瑄(2023)。第二級毒品施用者之司法戒治成本比較研究-以臺灣臺北地方檢察署及法務部矯正署新店戒治所為例。刑事政策與犯罪防治研究專刊,34,147–190。https://doi.org/10.6460/CPCP.202304_(34).04
賴擁連、蔡田木、吳慧菁(2019)。緩起訴附命戒癮治療者完成與撤銷戒癮治療之成因分析。藥物濫用防治,4(3),81–112。https://doi.org/10.6645/JSAR.201909_4(3).4
顏玉如、韓意慈、張祺(2023)。司法系統中女性成癮與精神共病者的需求-美國處遇經驗對附條件緩起訴之啟發。刑事政策與犯罪防治研究專刊,36,139–191。https://doi.org/10.6460/CPCP.202312_(36).0004