簡易檢索 / 詳目顯示

研究生: 李昀翰
Yun-Han Lee
論文名稱: 雙足機器人站立姿態擾動平衡控制
Bipedal Robot Standing Posture Balance Control Under Disturbance
指導教授: 陳美勇
Chen, Mei-Yung
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 74
中文關鍵詞: 踝關節穩定策略髖關節穩定策略壓力中心虛擬腳指點虛擬模型控制SimMechanics
英文關鍵詞: ankle strategy, hip strategy, center of pressure, virtual toe point, virtual model control, SimMechanics
DOI URL: https://doi.org/10.6345/NTNU202205245
論文種類: 學術論文
相關次數: 點閱:615下載:49
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要目的為為實驗室展開中形人型機器人的研究,以期在機器人研究領域上有新的一步。
    人形機器人開發後的第一步首先要能成功站立,並可應付外界一定程度的干擾還能維持不倒,因此站立姿態擾動平衡恢復控制將為本文首要探討的運動規劃。人形機器人成功站立後,鎖定機器人膝關節,僅踝關節和髖關節可制動,由軌道能量的概念,針對外界水平向擾動後系統質心的位置和速度狀態去計算系統軌道能量,由此導出系統能量和地面壓力中心的關係,並賦予此壓力點為腳底的瞬時擷取點,當瞬時擷取點都維持在壓力中心臨界值所包圍的腳底支撐多邊形內部時則應用倒單擺系統所推展出來的踝關節穩定策略來維持機器人的恢復穩定;當超過壓力中心可能承受的臨界後,則切換到線性飛輪倒單擺所推展出來的髖關節穩定策略來導回機器人的平衡。
    踝關節和髖關節的制動扭矩由虛擬模型控制導出。針對俯仰軸面而言,上軀幹的質心僅受水平向、垂直向和俯仰軸的旋轉三個虛擬作用力,依虛擬腳指點合力矩為零的概念去推算水平向虛擬作用力,加上垂直向補償重力和關節策略下髖關節對應俯仰軸的旋轉虛擬力矩,三者即可依正向運動學概念導出各關節的相應扭矩。
    本論文應用Solidworks對機器人平台的機構做規劃與設計,以此設計好的組合件賦予材質等物理特性後,匯入matlab之simulink工具庫中所提供的SimMechanics模組,快速建立符合設計需求的虛擬實體,以此進行運動模擬可加快整個機電系統開發設計的速度與模擬可視化的直覺性。

    The thesis aims the development of the human-like robot for the lab, and hopes to set a new milestone of the research on humanoid robot.
    After developing the bipedal robot, the first step is to make robot stand up successfully and be able to fight against the disturbances to preventing falls. To this end, the balance control for fall prevention of the bipedal robot upright posture is the prime consideration of motion control. With the concept of the orbital energy, we figure out the system state of the position and the velocity to calculate the orbital energy and define it as the Instantaneous Capture Point. When the Instantaneous Capture Point stays in the support polygon under the foot, the ankle strategy derived from the linear inverted pendulum model is applied to maintain the balance of the robot. If the Instantaneous Capture Point is over the boundary of the center of pressure, it switches to the hip strategy derived from the linear inverted pendulum model plus fly wheel to get push recovery.
    The values of the ankle joint and hip joint are derived under the approach of Virtual Model Control. To the pitch axis side, the torso is applied by the virtual forces caused by the horizontal virtual force, the vertical virtual force of gravity-compensation, and the virtual torque. With the concept that the resultant torque to Virtual Toe Point is zero, it could be used to calculate the horizontal virtual force. Combine these three virtual forces, the related joint torques would be derived with the forward kinematic.
    I design the structure of the bipedal robot, define material properties to the structure by Solidworks, and transport it into SimMechanics, one of tool boxes plugged in Simulink of matlab. It shortens the time to build the virtual model for simulation and the result will be more visualized.

    摘要 ..................................................i Abstract .............................................ii 致謝 .................................................iv 目錄 ..................................................v 圖目錄 ...............................................ix 表目錄 .............................................xiii 第一章 緒論 ...........................................01 1.1前言 ..............................................01 1.2研究動機與目的 .....................................03 1.3 文獻回顧 .........................................03 1.4 本論文貢獻與架構 ..................................08 第二章 運動學 .........................................09 2.1座標轉換 ...........................................09 2.2 Denative-Hartenberg運動學表示法 ..................11 2.3機器人之運動學 ....................................13 2.3.1機器人運動模型 ..................................13 2.3.2正向運動學 ......................................14 2.3.3逆向運動學 ......................................15 2.3.4 Jacobian矩陣 ..................................16 2.3.4 VMC控制扭矩計算用之正向運動學 ....................17 第三章 雙足機器人的立姿穩定與平衡 ......................18 3.1零力矩點ZMP與姿態穩定 ..............................18 3.1.1 ZMP定義 .......................................19 3.1.2 機器人動態模型與ZMP導出 .........................19 3.2 零力矩點ZMP、虛零力矩點FZMP、壓力中心CoP ...........21 3.3 簡化模型 .........................................21 3.4 穩定策略 .........................................24 3.4.1 瞬時擷取點(Instantaneous Capture Point, ICP) ...25 3.4.2 踝關節策略 .....................................26 3.4.3 髖關節策略 .....................................27 3.5簡化模型模擬之穩定策略分析 ..........................29 3.5.1 IPM模擬之穩定策略分析 ...........................30 3.5.2 IPFM模擬之穩定策略分析 ..........................31 3.6 小結 ............................................32 第四章 穩定策略下之機器人控制 ..........................33 4.1 虛擬模型控制(Virtual Model Control) ..............33 4.2 平衡控制 .........................................35 4.2.1 ICP的計算與調整 ................................36 4.2.2 上軀幹動作的執行選擇 ............................36 4.2.3 重力補償 .......................................37 4.2.4 關節扭矩的計算 .................................38 第五章 踝髖關節策略之立姿擾動控制模擬 ...................41 5.1 SimMechanics視覺化動力模擬 .......................41 5.1.1 SimMechanics特性 ..............................42 5.1.2 Solisworks機構建立與參數取樣 ....................42 5.1.3 SimMechanics座標系統配置 .......................44 5.2 雙足機器人踝髖關節控制之站立姿擾動模擬 ..............51 5.3 小結 ............................................58 第六章 機器人機構設計與設備選擇 ........................59 6.1 設計概念 .........................................59 6.2 已開發機器人之設計回顧 ............................59 6.3 本研究之足式機器人設計構想 .........................63 6.3.1 馬達挑選 .......................................65 6.3.2 其他相關硬體 ...................................67 6.4 小結 ............................................67 第七章 結果討論與未來與展望 ............................68 7.1 模擬結果與比較 ...................................68 7.2 未來展望 ........................................68 參考文獻 ............................................70

    [1]Rossum's Universal Robots, http://en.wikipedia.org/wiki/R.U.R.
    [2]Steven H. Collins, Martijn Wisse, and Andy Ruina, “A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees,” Sage Publications, The International Journal of Robotics Research, Vol. 20, No. 7, pp. 607-615, July 2001.
    [3]Ting Wang and Christine Chevallereau, “A quasi-passive model of human leg function in level-ground walking,” IEEE-RAS International Conference on Humanoid Robots, December 2010.
    [4]Jin’ichi Yamaguchi, Eiji Soga, Sadatoshi Inoue and Atsuo Takanishi, “Development of a Bipedal Humanoid Robot: Control Method of Whole Body Cooperative Dynamic Biped Walking,” International Conference on Robotics & Automation, May 1999.
    [5]Masato Hirose1 and Kenichi Ogawa, “Honda humanoid robots development,” Phil. Trans. R. Soc. A, vol. 365 no. 1850, January 2007.
    [6]Kenji KANEKO, Fumio KANEHIRO, Mitsuharu MORISAWA, Kazuhiko AKACHI, Go MIYAMORI, Atsushi HAYASHI and Noriyuki KANEHIRA, “Humanoid Robot HRP-4: Humanoid Robotics Platform with Lightweight and Slim Body,” IEEE/RSJ International Conference on Intelligent Robots and Systems, September 2011.
    [7]Yu Ogura, Kazushi Shimomura, Hideki Kondo, Akitoshi Morishima, Tatsu Okubo, Shimpei Momoki, Hun-ok Lim and Atsuo Takanishi, “Human-like Walking with Knee Stretched, Heel-contact and Toe-off Motion by a Humanoid Robot,” IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2006.
    [8]I.-W Park, J.-Y. Kim, and O. Jun-Ho, “ Online biped walking pattern generation for humanoid robot khr-3(kaist humanoid robot - 3: Hubo),” in Humanoid Robots, IEEE-RAS International Conference ,2006, pp. 398-403, 2006.
    [9]S. Lohmeier, T. Buschmann, and H. Ulbrich, “Humanoid Robot LOLA,” Proc. of the International Conference on Robotics and Automation, pp.775–780, IEEE, 2009.
    [10]D. L. Pieper, “The kinematics of manipulators under computer control,” Ph.D. dissertation, Stanford University Department of Computer Science, October 1968.
    [11]M.A. Ali, H. A. Park, and C.S.G. Lee, "Closed-form inverse kinematic joint solution for humanoid robots," IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 704-709, 2010.
    [12]M. Vukobratovic and J. Stepanenko, “On the Stability of Anthropomorphic Systems,” Mathematical Biosciences, Vol. 15, pp. 1-37,1972.
    [13]M. Vukobratovic and B. Borovac, “Zero-Moment Point - Thirty Five Years of Its Life,” International Journal of Humanoid Robotics, Vol. 1, No.1, pp. 157-173, 2004.
    [14]A. Goswami, “Foot Rotation Indicator (FRT) point: A new gait planning tool to evaluate postural stability of biped robots,” Proc. of IEEE International Conference on Robotics and Automation, Detroit, pp.47-52, 1999.
    [15]K. Hirai, M. Hirose, Y. Haikawa and T. Takenaka. “The Development of Honda Humanoid Robot,” Proc. of Intternational Conference on Robotics and Automation, pp.1321-1326, 1998.
    [16]Dragomir N, Nenchev and Akinori Nishio, “Experimental Validation of Ankle and Hip Strategies for Balance Recovery with a Biped Subjected to an Impact,” Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007.
    [17]Seung-Joon Yi, Byoung-Tak Zhang, Dennis Hong and Daniel D. Lee, “Active Stabilization of a Humanoid Robot for Impact Motions with Unknown Reaction Forces,” IEEE/RSJ International Conference on Intelligent Robots and Systems, October 7-12, 2012.
    [18]Yoshikazu Kanamiya, Shun Ota and Daisuke Sato, “Ankle and Hip Balance Control Strategies with Transitions,” IEEE International Conference on Robotics and Automation Anchorage Convention District, May 3-8, 2010.
    [19]Yu Wei, Baa Gang and Wang Zuwen, “Balance Recovery for Humanoid Robot in the Presence of Unknown External Push,” Proc. of the IEEE International Conference on Mechatronics and Automation, August 9 - 12, 2009.
    [20]S. Kajitu. T. Yamaura, and A. Kabayarhi, “Dynamic walking control of a biped robot dong a potential energy conserving orbit,” IEEE Transaction on Robotics and Automation, vol. 8, pp. 431-438. August 1992.
    [21]J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step toward humanoid push recovery,” Proc. of the IEEE-RAS International Conference on Humanoid Robots, pp. 200–207, 2006.
    [22]F. B. Horak and L. M. Nashner, “Central programming of postural movements: adaptation to altered support-surface configurations,” Journal of neurophysiology, Vol. 55, No. 6, June, 1986.
    [23]Benjamin Stephens, “Humanoid push recovery”, IEEE-RAS International Conference on Humanoid Robots, 2007.
    [24]B. Jalgha, D. Asmar, and I. Elhajj, “A hybrid ankle/hip preemptive falling scheme for humanoid robots,” in Robotics and Automation (ICRA), Proc. of the IEEE International Conference, May, 2011.
    [25]Pratt J, Chew C, Torres A, Dilworth P and Pratt G, “Virtual model control: An intuitive approach for bipedal locomotion,” The International Journal of Robotics Research 20: 129, 2001.
    [26]Pratt J. and Torres A., “Virtual Actuator Control,” Proc. of the International Conference on Intelligent Robots and Systems (IROS).
    [27]J. Pratt and G. Pratt, “Intuitive Control of a Planar Bipedal Walking Robot,” Proc. of the International Conference on Robotics and Automation (ICRA), 1997.
    [28]SUGV. Available: http://brahmand.com/news/Boeing-iROBOT-receives-384-mln-SUGV-contract-from-USAF/5162/1/24.html
    [29]SmartBird. Available: http://phys.org/news/2011-03-bird-plane-robot-video.html
    [30]Naro. Available: http://www.plasticpals.com/?p=23404
    [31]NAO. Available: http://robot4pro.blogspot.tw/
    [32]Snake robot. Available: http://www.news.com.au/technology/bioroboticists-create-a-robot-snake-that-can-climb-trees/story-e6frfro0-1225915794779
    [33]Robot Fly. Available: http://spectrum.ieee.org/aerospace/aviation/fly-robot-fly/robosb02
    [34]Wildcat. Available: https://www.pinterest.com/br0br0br0/robots/
    [35]Ai house ice cream robot. Available: http://reader.roodo.com/hopetw/archives/27645336.html
    [36]Passive leg robot. Available: http://www.jaist.ac.jp/~fasano/leg/leg2.html
    [37]WL-5. Available: http://www.humanoid.waseda.ac.jp/booklet/kato_4.html
    [38]WABOT-1. Available: http://www.humanoid.waseda.ac.jp/booklet/kato_2.html
    [39]ASIMO series. Available: http://world.honda.com/ASIMO/history/
    [40]HRP series. Available: http://ameblo.jp/sirius55/entry-10225896292.html
    [41]WABIAN-2. Available: http://www.takanishi.mech.waseda.ac.jp/top/research/wabian/wabian2_2LL/wabian2_2LL.htm
    [42]HUBO. Available: http://www.roboticstoday.com/robots/jaemi-hubo-hubo-2
    [43]LOLA. Available: http://www.amm.mw.tum.de/en/research/current-projects/humanoid-robots/
    [44]THOR and THOR-OP. Available: https://awaissoftnews.wordpress.com/2014/01/09/futuristic-human-like-robots-unveiled-at-the-darpa-robotics-challenge/
    [45]HRP-2 used at DRC. Available: http://codemink.com/google-triumphs-at-darpas-robotic-challenge/
    [46]Nino. Available: http://spectrum.ieee.org/automaton/robotics/humanoids/ntu-taiwan-humanoid-sign-language
    [47]David II. Available: http://web.ncku.edu.tw/files/14-1000-110538,r1353-1.php
    [48]Ill-Woo Park, Jung-Yup Kim, Jungho Lee and Jun-Ho Oh, “Mechanical design of humanoid robot platform KHR-3 (KAIST Humanoid Robot 3: HUBO),” IEEE-RAS International Conference on Humanoid Robots, 2005.
    [49]Kawamura, A. and Chi Zhu, “The Development of Biped Robot MARI-3 for Fast Walking and Running,” IEEE-RAS International Conference on Humanoid Robots, 2006.
    [50]Sebastian Lohmeier, Thomas Buschmann, Markus Schwienbacher, Heinz Ulbrich and Friedrich Pfeiffer, “Leg Design for a Humanoid Walking Robot,” IEEE-RAS International Conference on Humanoid Robots, 2006.
    [51]Maxon EC motor. Available: http://www.maxonmotor.com.tw/maxon/view/category/motor?target=filter&filterCategory=ec
    [52]Maxon GP reducer. Available: http://www.maxonmotor.com.tw/maxon/view/category/gear?target=filter&filterCategory=planetary
    [53]Maxon controller EPOS2 50/5. Available: http://www.maxonmotor.com.tw/maxon/view/category/control?target=filter&filterCategory=Positionierung&q=Epos
    [54]NI PXIe 1071. Available: http://sine.ni.com/nips/cds/view/p/lang/zht/nid/208933

    下載圖示
    QR CODE