簡易檢索 / 詳目顯示

研究生: 高譜軒
Kao, Pu-Hsuan
論文名稱: 探討颱風和寒流對於臺北市兩個都市公園植被的影響
Assessments of the Effects of Typhoon and Cold Surge Disturbances on the Vegetation of Two Urban Parks in the Taipei City
指導教授: 林登秋
Lin, Teng-Chiu
口試委員: 王素芬
Wang, Su-Fen
張仲德
Chang, Chung-Te
林登秋
Lin, Teng-Chiu
口試日期: 2022/01/24
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 81
中文關鍵詞: 都市公園綠地颱風寒流植生指標高空間解析度衛星影像
英文關鍵詞: urban green space (UGS), typhoon, cold surge, vegetation index, high spatial resolution satellite images
DOI URL: http://doi.org/10.6345/NTNU202200595
論文種類: 學術論文
相關次數: 點閱:76下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 都市綠地是都市地景的重要組成單元,也是提升都市生活品質重要的一環;其中,都市公園更是民眾休閒的重要場所。然而,一如自然森林綠地,都市公園綠地也經常受到許多自然擾動的影響,其中颱風和寒流即是臺灣常見的自然擾動;但相較於森林、海洋、紅樹林等自然環境,過去研究鮮少著重於颱風、寒流等自然擾動事件對都市公園綠地的影響。雖然都市公園綠地範圍較小,但因和民眾生活息息相關,一旦受到自然擾動的影響,很可能影響其所能提供生態系統服務質量。因此,研究極端天氣事件如何影響都市公園綠地,有助於了解都市公園綠地於未來全球暖化情況下,對於何種天氣事件較為敏感。本研究以Worldview-2、Worldview-3及Geoeye-1高空間解析度衛星影像作為研究材料,透過計算植生指標 (Vegetation Index, VI) ,比較2015年8月蘇迪勒颱風及2016年1月霸王級寒流對臺北市兩個都市公園綠地—大安森林公園和青年公園植被的影響。研究結果顯示,於颱風和寒流過境後兩個公園的增揚植生指標 (Enhanced Vegetation Index, EVI) 顯著下降,而常態化差異植生指標 (Normalized Difference Vegetation Index, NDVI) 則僅在颱風後下降,代表颱風會造成都市公園植生覆蓋立即下降,而罕見的寒流影響會因所使用的植生指數不同而有不同的結果;另外,整體來看,颱風擾動的影響與植生所在的位置有關,減損情況由外圍至內部遞減,而寒流擾動的影響則無明顯空間規律;在植生類型之間,都市公園兩類主要植生即樹木與草地,其中,樹木較草地容易受到颱風和寒流的影響;以區塊面積來看,若以NDVI作為判斷依據,受颱風影響的青年公園和受寒流影響的大安森林公園皆呈面積越大,受到的影響越小,但受寒流影響的青年公園則呈面積越大,受到的影響越大,若以EVI作為判斷依據,受颱風影響的青年公園則呈面積越大,受到的影響越小,而受颱風和寒流影響的大安森林公園則呈面積越大,受到的影響越大;在大安森林公園不同樹種間,NDVI在颱風後減損最嚴重的為艷紫荊,在寒流影響後減損最為嚴重的則為原生於熱帶的大王椰子,若以EVI評估,則分別為水黃皮和雀榕,而青年公園中受颱風和寒流影響後NDVI減損最為嚴重的樹種皆為楓香,若以EVI評估,楓香亦為受寒流影響後減損最為嚴重的樹種,而受颱風影響後減損最為嚴重的樹種則為阿勃勒。最後,研究結果亦指出,大安森林公園中的樹木,於受颱風和寒流影響後植生指數的變化,僅與樹高和DBH具顯著關係。
    本研究結果有助於評估未來氣候變遷造成颱風及寒流頻率和強度發生變化時,對都市公園綠地的衝擊,以作為都市公園經營管理的參考。

    Urban green space is an important component of urban landscape and plays a critical role in improving the quality of urban life. Among different types of green space, urban parks are among the most important leisure places to urban residents. Like forests, urban parks are also frequently influenced by natural disturbances, with typhoons and cold surges as the common natural disturbances in Taiwan. However, comparing with natural environments such as forests, oceans, and mangroves, few studies have examined the impacts of typhoons and cold surges on urban parks. Although the extent of urban parks is relatively small compared to many nature forests, once affected by natural disturbances, the quality of the ecosystem services they provide could be affected. Therefore, studying how extreme weather events affect urban parks helps our understanding of which types of extreme weather event have greater effects on urban parks. In this study, we used three types of high spatial resolution satellite images, WorldView-2, WorldView-3 and Geoeye-1, acquired prior to and after typhoon Soudelor of August 2015 and the cold surge of January 2016 of the Daan Forest Park and the Youth Park in the Taipei City together with vegetation indices (VIs) to assess how the two disturbances affect vegetation cover. The results showed that the enhanced vegetation index (EVI) of the two parks decreased significantly after the typhoon and the cold surge, while the normalized difference vegetation index (NDVI) only decreased after Typhoon Soudelor. The result indicates that the vegetation coverage of urban parks is more prone to the typhoon disturbance than to the cold surge.
    Overall, the typhoon disturbance pattern was directional, with increasing typhoon-induced vegetation loss from the center to the edges of the urban parks, while no such a pattern was observed for the cold surge disturbance. Trees were more susceptible to typhoon and cold surge disturbance than grassland. Based on NDVI, the impact of typhoon to the Youth Park and the impact of the cold surge to the Daan Forest Park were greater for larger patches, while the impact of cold surge to the Youth Park was smaller for larger patches. Based on EVI, the impact of the typhoon to the Youth Park was smaller for larger patches, while for the Daan Forest Park the larger the patches, the greater the impact for both the typhoon and the cold surge. Bauhinia blakeana D. and Roystonea regia suffered the most severe vegetation loss after the typhoon and the cold surge, respectively, in the Daan Forest Park based on NDVI, while the most severely affected tree species was Pongamia pinnata and Ficus subpisocarpa, respectively, based on EVI. In the Youth Park, Liquidambar formosana was the most severely affected tree species after the typhoon and the cold surge based on NDVI, while based on EVI, Liquidambar formosana also severely affected after the cold surge, and Cassia fistula L. was the most severely affected species after the typhoon. Furthermore, tree height and diameter in breath height had a significant relationship with vegetation loss associated with the typhoon and the cold surge in the Daan Forest Park。
    The results will contribute to evaluate the impacts of typhoons and cold surges on urban parks under a changing climate and thus provide useful information for urban park management.

    第一章 前言 1 第一節 都市綠地的重要性 1 第二節 都市綠地和颱風、寒流相關的研究 3 一、颱風 3 二、寒流 4 第三節 颱風、寒流對生態系結構的影響 6 第四節 遙測技術應用 7 第五節 植生指標的應用 8 第六節 研究目的 10 第二章 材料與方法 11 第一節 研究地點與研究材料 11 第二節 研究方法 15 一、衛星影像前期處理 15 二、衛星影像處理 21 三、VI相關性和異質性分析 27 四、空間特徵變遷分析 28 五、影響樹種VI變動量可能因子分析 29 第三章 研究結果 30 第一節 兩種植生指標之變動、一致性及變異度 30 第二節 空間特徵與植生指標變動量之關係探討 38 一、大安森林公園 38 二、青年公園 43 第三節 影響大安森林公園樹種植生指標變動的可能因子探討 48 第四章 討論 51 第一節 颱風及寒流擾動前後VI變動、一致性及異質性 51 第二節 颱風和寒流對都市公園的影響之空間特徵 53 一、 位置 53 二、 植被類型 54 三、 區塊面積 55 四、 樹種 56 第三節 影響大安森林公園樹種植生指標變動的可能因子 61 第四節 研究上的限制及未來研究建議 63 一、研究上的限制 63 二、未來研究建議 63 第五章 結論 65 參考文獻 67

    臺北市政府工務局公園路燈工程管理處,https://pkl.gov.taipei/
    交通部中央氣象局全球資訊網,https://www.cwb.gov.tw/V8/C/
    李思瑩、盧孟明(2016)2016年1月霸王級寒流事件大尺度氣候特徵分析。交通部中央氣象局科技研究中心。
    張志新、王俞婷、傅鏸漩、林又青、張駿暉、劉哲欣、呂喬茵、吳啟瑞、蘇元風(2015)2015年蘇迪勒颱風災害調查彙整報告。國家災害防救科技中心。
    張智鈞、洪志誠、董德輝(2020)臺灣冬季寒潮歷史變遷與未來推估。大氣科學, 48(2),205-233。
    章錦瑜(2000)颱風對臺中市喬木破壞之調查。東海學報,41,149-160。
    章錦瑜(2009)台中市環根形成規模與影響因素之研究。造園景觀學報,15,1-17。
    Abbas, S., Nichol, J. E., & Fischer, G. A. (2017). Mapping and assessment of impacts of cold and frost on secondary forest in the marginally tropical landscape of Hong Kong. Agricultural and Forest Meteorology, 232, 543-549.
    Abburu, S., & Golla, S. B. (2015). Satellite image classification methods and techniques: A review. International Journal of Computer Applications, 119, 20-25.
    Aram, F., García, E. H., Solgi, E., & Mansournia, S. (2019). Urban green space cooling effect in cities. Heliyon, 5, e01339.
    Aronson, M. F. J., Lepczyk, C. A., Evans, K. L., Goddard, M. A., Lerman, S. B., MacIvor, J. S., Nilon, C. H., & Vargo, T. (2017). Biodiversity in the city: key challenges for urban green space management [Review]. Frontiers in Ecology and the Environment, 15, 189-196.
    Atkinson, P. M., & Curran, P. J. (1997). Choosing an appropriate spatial resolution for remote sensing investigations. Photogrammetric Engineering and Remote Sensing, 63, 1345-1351.
    Bai, T., Mayer, A. L., Shuster, W. D., & Tian, G. (2018). The hydrologic role of urban green space in mitigating flooding (Luohe, China). Sustainability, 10, 3584.
    Barrios, K., & Ruter, J. M. (2018). Liquidambar formosana ‘Formosan Gold’. HortScience, 53, 1520-1522.
    Bozelli, R. L., Thomaz, S. M., Padial, A. A., Lopes, P. M., & Bini, L. M. (2015). Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia, 753, 233-241.
    Burslem, D.F.R.P., Whitmore, T.C., & Brown, G.C. (2000). Short-term effects of cyclone impact and long-term recovery of tropical rain forest on Kolombangara, Solomon Islands. Journal of Ecology, 88, 1063-1078.
    Cavanaugh, K. C., Kellner, J. R., Forde, A. J., Gruner, D. S., Parker, J. D., Rodriguez, W., & Feller, I. C. (2014). Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences, 111, 723-727.
    Chang, C. T., Lin, T. C., Wang, S. F., & Vadeboncoeur, M. A. (2011) Assessing growing season beginning and end dates and their relation to climate in Taiwan using satellite data. International Journal of Remote Sensing 32, 5035-5058.
    Chen, B., Cao, J., Wang, J., Wu, Z., Tao, Z., Chen, J., ... & Xie, G. (2012). Estimation of rubber stand age in typhoon and chilling injury afflicted area with Landsat TM data: a case study in Hainan Island, China. Forest Ecology and Management, 274, 222-230.
    Chen, L. J., Xiang, H. Z., Miao, Y., Zhang, L., Guo, Z. F., Zhao, X. H., ... & Li, T. L. (2014). An overview of cold resistance in plants. Journal of Agronomy and Crop Science, 200, 237-245.
    Cummins, S. K., & Jackson, R. J. (2001). The built environment and children's health. Pediatric Clinics of North America, 48, 1241-1252.
    Dade, M. C., Mitchell, M. G., Brown, G., & Rhodes, J. R. (2020). The effects of urban greenspace characteristics and socio-demographics vary among cultural ecosystem services. Urban Forestry and Urban Greening, 49, 126641.
    Dharmawan, I. A., Rahadianto, M. A. E., Henry, E., Endyana, C., & Aufaristama, M. (2021). Application of High-Resolution Remote-Sensing Data for Land Use Land Cover Mapping of University Campus. Scientific World Journal, 2021, 5519011.
    D'odorico, P., He, Y., Collins, S., De Wekker, S. F., Engel, V., & Fuentes, J. D. (2013). Vegetation–microclimate feedbacks in woodland–grassland ecotones. Global Ecology and Biogeography, 22, 364-379.
    Eiserhardt, W. L., Svenning, J. C., Kissling, W. D., & Balslev, H. (2011). Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Annals of Botany, 108, 1391-1416.
    Elliott, K. J., & Vose, J. M. (2016). Effects of riparian zone buffer widths on vegetation diversity in southern Appalachian headwater catchments. Forest Ecology and Management, 376, 9-23.
    Elmqvist, T., Rainey, W.E., Pierson, E.D., & Cox, P.A. (1994). Effects of Tropical Cyclones Ofa and Val on the structure of a Samoan lowland rain forest. Biotropica, 26, 384-391.
    Fahey, R. T., Stuart-Haëntjens, E. J., Gough, C. M., De La Cruz, A., Stockton, E., Vogel, C. S., & Curtis, P. S. (2016). Evaluating forest subcanopy response to moderate severity disturbance and contribution to ecosystem-level productivity and resilience. Forest Ecology and Management, 376, 135-147.
    Ferro-Famil, L., & Pottier, E. (2016). Synthetic Aperture Radar Imaging. Microwave Remote Sensing of Land Surface, 1-65.
    Gannon, B.M., & Martin, P.H. (2014). Reconstructing hurricane disturbance in a tropical montane forest landscape in the Cordillera Central, Dominican Republic: implications for vegetation patterns and dynamics. Arctic, Antarctic, and Alpine Research, 46, 767-776.
    Gernes, R., Brokamp, C., Rice, G. E., Wright, J. M., Kondo, M. C., Michael, Y. L., Donovan, G. H., Gatziolis, D., Bernstein, D., LeMasters, G. K., Lockey, J. E., Khurana Hershey, G. K., & Ryan, P. H. (2019). Using high-resolution residential greenspace measures in an urban environment to assess risks of allergy outcomes in children. Science of the Total Environment, 668, 760-767.
    Green, E. P., Clark, C. D., & Edwards, A. J. (2000). Geometric correction of satellite and airborne imagery. Remote Sensing Handbook for Tropical Coastal Management.
    Haaland, C., & van Den Bosch, C. K. (2015). Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban Forestry and Urban Greening, 14, 760-771.
    Hanum, I. F., & Maesen, L. J. G. (1997). Plant Resources of South-East Asia (Vol. 11). Backhuys Publ.
    Harrington, R. A., Fownes, J.H., Scowcroft, P.G., & Vann, C.S. (1997). Impact of Hurricane Iniki on native Hawaiian Acacia koa forests: damage and two-year recovery. Journal of Tropical Ecology, 13, 539-558.
    Hong, C. C., Hsu, H. H., Chia, H. H., & Wu, C. Y. (2008). Decadal relationship between the North Atlantic Oscillation and cold surge frequency in Taiwan. Geophysical Research Letters, 35, L24707.
    Hu, T., & Smith, R. B. (2018). The impact of Hurricane Maria on the vegetation of Dominica and Puerto Rico using multispectral remote sensing. Remote Sensing, 10, 827.
    Huang, C. (2018). Forest Disturbance Mapping. Comprehensive Remote Sensing, 13–23.
    Huang, H. W., Huang, H. H., & Chang, H. S. (2009). The Eco-efficiency Assessments of Hazards prevention in Urban Parks of Taiwan. na.
    Huete, A. R. (2012). Vegetation indices, remote sensing and forest monitoring. Geography Compass, 6, 513-532.
    Huete, A. R., Liu, H. Q., Batchily, K. V., & Van Leeuwen, W. J. D. A. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59, 440-451.
    Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195-213.
    Ismail, M. H., & Jusoff, K. (2008). Satellite data classification accuracy assessment based from reference dataset. International Journal of Computer and Information Science and Engineering, 2, 96-102.
    Jaafari, S., Shabani, A. A., Moeinaddini, M., Danehkar, A., & Sakieh, Y. (2020). Applying landscape metrics and structural equation modeling to predict the effect of urban green space on air pollution and respiratory mortality in Tehran. Environmental Monitoring and Assessment, 192, 1-15.
    Jensen, J. R. (1996). Introductory digital image processing: a remote sensing perspective (No. Ed. 2). Prentice-Hall Inc.
    Jensen, J. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. Fourth edition.
    Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112, 3833-3845.
    Jim, C. Y., & Liu, H. H. (1997). Storm damage on urban trees in Guangzhou, China. Landscape and Urban Planning, 38, 45-59.
    Jim, C. Y., & Liu, H. T. (2001). Species diversity of three major urban forest types in Guangzhou City, China. Forest Ecology and Management, 146, 99-114.
    Jönsson, M. T., Fraver, S., Jonsson, B. G., Dynesius, M., Rydgård, M., & Esseen, P. A. (2007). Eighteen years of tree mortality and structural change in an experimentally fragmented Norway spruce forest. Forest Ecology and Management, 242, 306-313.
    Karuppannan, S., Baharuddin, Z. M., Sivam, A., & Daniels, C. B. (2014). Urban green space and urban biodiversity: Kuala Lumpur, Malaysia. Journal of Sustainable Development, 7, 1.
    Kim, S. Y., & Kim, B. H. (2017). The effect of urban green infrastructure on disaster mitigation in Korea. Sustainability, 9, 1026.
    Klein, R. W., Koeser, A. K., Kane, B., Landry, S. M., Shields, H., Lloyd, S., & Hansen, G. (2020). Evaluating the likelihood of tree failure in Naples, Florida (United States) following Hurricane Irma. Forests, 11, 485.
    Kong, F., Yin, H., Nakagoshi, N., & Zong, Y. (2010). Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landscape and Urban Planning, 95, 16-27.
    Kuang, W. (2019). Mapping global impervious surface area and green space within urban environments. Science China Earth Sciences, 62, 1591-1606.
    Laurance, W. F., & Curran, T. J. (2008). Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral Ecology, 33, 399-408.
    Lawrence, R. L., & Ripple, W. J. (1998). Comparisons among vegetation indices and bandwise regression in a highly disturbed, heterogeneous landscape: Mount St. Helens, Washington. Remote Sensing of Environment, 64, 91-102.
    Lee, M. F., Lin, T. C., Vadeboncoeur, M. A., & Hwong, J. L. (2008). Remote sensing assessment of forest damage in relation to the 1996 strong typhoon Herb at Lienhuachi Experimental Forest, Taiwan. Forest Ecology and Management, 255, 3297-3306.
    Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote Sensing and Image Interpretation. John Wiley & Sons.
    Lin, C. Y., Lung, S. C. C., Guo, H. R., Wu, P. C., & Su, H. J. (2009). Climate variability of cold surge and its impact on the air quality of Taiwan. Climatic Change, 94, 457-471.
    Lo, A. Y., Byrne, J. A., & Jim, C. Y. (2017). How climate change perception is reshaping attitudes towards the functional benefits of urban trees and green space: Lessons from Hong Kong. Urban Forestry and Urban Greening, 23, 74-83.
    Luke, D., McLaren, K., & Wilson, B. (2016). Modeling hurricane exposure in a Caribbean lower montane tropical wet forest: The effects of frequent, intermediate disturbances and topography on forest structural dynamics and composition. Ecosystems, 19, 1178-1195.
    Lu, L., Wu, C., & Di, L. (2020). Exploring the spatial characteristics of typhoon-induced vegetation damages in the southeast coastal area of China from 2000 to 2018. Remote Sensing, 12, 1692.
    Lupo, A. R., Nocera, J. J., Bosart, L. F., Hoffman, E. G., & Knight, D. J. (2001). South American cold surges: Types, composites, and case studies. Monthly Weather Review, 129, 1021-1041.
    Lyon, J. G., Yuan, D., Lunetta, R. S., & Elvidge, C. D. (1998). A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing, 64, 143-150.
    Mabon, L., & Shih, W. Y. (2018). What might ‘just green enough’urban development mean in the context of climate change adaptation? The case of urban greenspace planning in Taipei Metropolis, Taiwan. World Development, 107, 224-238.
    Massetti, E., & Mendelsohn, R. (2015). How do heat waves, cold waves, droughts, hail and tornadoes affect US agriculture? CMCC Research Paper, RP0271.
    Mei, W., Xie, S. P., Primeau, F., McWilliams, J. C., & Pasquero, C. (2015). Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Science Advances, 1, e1500014.
    Minařík, R., Langhammer, J., & Hanuš, J. (2019). Radiometric and atmospheric corrections of multispectral μMCA camera for UAV spectroscopy. Remote Sensing, 11, 2428.
    Negrón-Juárez, R., Baker, D.B., Chambers, J.Q., Hurtt, G.C., & Goosem, S. (2014). Multi-scale sensitivty of Landsat and MODIS to forest disturbance associated with tropical cyclones. Remote Sensing of Environment, 140, 679-689.
    Nguyen, K. A., Liou, Y. A., Vo, T. H., Cham, D. D., & Nguyen, H. S. (2021). Evaluation of urban greenspace vulnerability to typhoon in Taiwan. Urban Forestry and Urban Greening, 63, 127191.
    Nolè, A., Rita, A., Ferrara, A. M. S., & Borghetti, M. (2018). Effects of a large-scale late spring frost on a beech (Fagus sylvatica L.) dominated Mediterranean mountain forest derived from the spatio-temporal variations of NDVI. Annals of Forest Science, 75, 1-11.
    Nouri, H., Nagler, P., Chavoshi Borujeni, S., Barreto Munez, A., Alaghmand, S., Noori, B., Galindo, A., & Didan, K. (2020). Effect of spatial resolution of satellite images on estimating the greenness and evapotranspiration of urban green spaces. Hydrological Processes, 34, 3183-3199.
    Nowak, D. J., Crane, D. E., & Stevens, J. C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry and Urban Greening, 4, 115-123.
    Oleksyn, J., Modrzýnski, J., Tjoelker, M. G., Z· ytkowiak, R., Reich, P. B., & Karolewski, P. (1998). Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Functional Ecology, 12, 573-590.
    Pacifici, F., Longbotham, N., & Emery, W. J. (2014). The importance of physical quantities for the analysis of multitemporal and multiangular optical very high spatial resolution images. IEEE Transactions on Geoscience and Remote Sensing, 52, 6241-6256.
    Peereman, J., Hogan, J. A., & Lin, T. C. (2020). Assessing typhoon-induced canopy damage using vegetation indices in the Fushan Experimental Forest, Taiwan. Remote Sensing, 12, 1654.
    Pirhalla, D. E., Sheridan, S. C., Ransibrahmanakul, V., & Lee, C. C. (2015). Assessing cold-snap and mortality events in south Florida coastal ecosystems: Development of a biological cold stress index using satellite SST and weather pattern forcing. Estuaries and Coasts, 38, 2310-2322.
    Reichgelt, T., West, C. K., & Greenwood, D. R. (2018). The relation between global palm distribution and climate. Scientific Reports, 8, 1-11.
    Ribeiro, G. H. P. D. M., Chambers, J. Q., Peterson, C. J., Trumbore, S. E., Marra, D. M., Wirth, C., ... & Higuchi, N. (2016). Mechanical vulnerability and resistance to snapping and uprooting for Central Amazon tree species. Forest Ecology and Management, 380, 1-10.
    Riera, J. L., Magnuson, J. J., Castle, J. R. V., & MacKenzie, M. D. (1998). Analysis of large-scale spatial heterogeneity in vegetation indices among North American landscapes. Ecosystems, 1, 268-282.
    Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., & Harlan, J. C. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation; Type III Final Report; NASA/GSFC: Greenbelt, MD, USA, 1974; p.371.
    Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 8, 611.
    Sahoo, H., Dehury, S., & Misra, R. Impact of cyclone Fani on tree damage in Bhubaneswar city, Odisha, India. E-planet, 17, 134-138.
    Santos, R. O., Rehage, J. S., Boucek, R., & Osborne, J. (2016). Shift in recreational fishing catches as a function of an extreme cold event. Ecosphere, 7, e01335.
    Sebastian‐Azcona, J., Hacke, U. G., & Hamann, A. (2018). Adaptations of white spruce to climate: strong intraspecific differences in cold hardiness linked to survival. Ecology and Evolution, 8, 1758-1768.
    Sikorska, D., Łaszkiewicz, E., Krauze, K., & Sikorski, P. (2020). The role of informal green spaces in reducing inequalities in urban green space availability to children and seniors. Environmental Science and Policy, 108, 144-154.
    Song, C., & Woodcock, C. E. (2003). Monitoring forest succession with multitemporal Landsat images: Factors of uncertainty. IEEE Transactions on Geoscience and Remote Sensing, 41, 2557-2567.
    Sun, Y., Meng, Q., Sun, Z., Zhang, J., & Zhang, L. (2017). Assessing the impacts of grain sizes on landscape pattern of urban green space. In AOPC 2017: Optical Sensing and Imaging Technology and Applications (Vol. 10462, p. 104623J). International Society for Optics and Photonics.
    Suti, A. L., Shidiq, I. A., & Wibowo, A. (2021). Vegetation index-based biomass model and Land Surface Temperature (LST) from urban green spaces in Bandung City derived from multispectral imageries. In IOP Conference Series: Earth and Environmental Science (Vol. 747, No. 1, p. 012060). IOP Publishing.
    Tanner, E. V. J., Rodriguez-Sanchez, F., Healey, J. R., Holdaway, R. J., & Bellingham, P. J. (2014). Long- term hurricane damage effects on tropical forest tree growth and mortality. Ecology, 95, 2974-2983.
    Tavares, P. A., Beltrão, N., Guimarães, U. S., Teodoro, A., & Gonçalves, P. (2019). Urban ecosystem services quantification through remote sensing approach: A systematic review. Environments, 6, 51.
    Texier, M. L., Schiel, K., & Caruso, G. (2018). The provision of urban green space and its accessibility: Spatial data effects in Brussels. PLoS ONE, 13, e0204684.
    Tian, Y., Jim, C. Y., & Tao, Y. (2012). Challenges and strategies for greening the compact city of Hong Kong. Journal of Urban Planning and Development, 138, 101-109.
    Tian, Y., Zhou, W., Qian, Y., Zheng, Z., & Pan, X. The influence of Typhoon Mangkhut on urban green space and biomass in Shenzhen, China. Acta Ecologica Sinica, 40, 2589-2598.
    Toutin, T. (2003). Geometric correction of remotely sensed images. In Remote Sensing of Forest Environments (pp. 143-180). Springer, Boston, MA.
    Toutin, T. (2011). State-of-the-art of geometric correction of remote sensing data: A data fusion perspective. International Journal of Image and Data Fusion, 2, 3-35.
    Tsai, H.P., & Yang, M.-D. (2016). Relating vegetation dynamics to climate variables in Taiwan using 1982-2012 NDVI3g data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 1624-1639.
    Turan, S. Ö., Pulatkan, M., Beyazlı, D., & Özen, B. S. (2016). User evaluation of the urban park design implementation with participatory approach process. Procedia-Social and Behavioral Sciences, 216, 306-315.
    Turner, M. G., Hargrove, W. W., Gardner, R. H., & Romme, W. H. (1994). Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. Journal of Vegetation Science, 5, 731-742.
    Vigneshwaran, S., & Vasantha Kumar, S. (2021). Comparison of classification methods for urban green space extraction using very high resolution worldview-3 imagery. Geocarto International, 36, 1429-1442.
    Vitasse, Y., Lenz, A., & Körner, C. (2014). The interaction between freezing tolerance and phenology in temperate deciduous trees. Frontiers in Plant Science, 5, 541.
    Walker, L. R. (1991). Tree damage and recovery from Hurricane Hugo in Luquillo experimental forest, Puerto Rico. Biotropica, 23, 379-385.
    Wang, M., & Xu, H. (2018). Remote sensing-based assessment of vegetation damage by a strong typhoon (Meranti) in Xiamen Island, China. Natural Hazards, 93, 1231-1249.
    Webb, E. L., van de Bult, M., Fa'aumu, S., Webb, R. C., Tualaulelei, A., & Carrasco, L. R. (2014). Factors affecting tropical tree damage and survival after catastrophic wind disturbance. Biotropica, 46, 32-41.
    Wei, C. C. (2019). Study on wind simulations using deep learning techniques during typhoons: a case study of Northern Taiwan. Atmosphere, 10, 684.
    Wei, K., Chen, W., & Zhou, W. (2011). Changes in the East Asian cold season since 2000. Advances in Atmospheric Sciences, 28, 69-79.
    Wolch, J. R., Byrne, J., & Newell, J. P. (2014). Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landscape and Urban Planning, 125, 234-244.
    Wu, S., Liang, Z., & Li, S. (2019). Relationships between urban development level and urban vegetation states: A global perspective. Urban Forestry & Urban Greening, 38, 215-222.
    Xu, S., Zhu, X., Helmer, E. H., Tan, X., Tian, J., & Chen, X. (2021). The damage of urban vegetation from super typhoon is associated with landscape factors: Evidence from Sentinel-2 imagery. International Journal of Applied Earth Observation and Geoinformation, 104, 102536.
    Xu, Z., Chen, F., Lin, L., Zheng, X., & Zhang, R. (2012, January). Low Temperature Disaster Analysis of Planting the Papaya in Fujian. In 2012 Second International Conference on Intelligent System Design and Engineering Application (pp. 857-860). IEEE.
    Yoshida, T., Noguchi, M., Uemura, S., Yanaba, S., Miya, H., & Hiura, T. (2011). Tree mortality in a natural mixed forest affected by stand fragmentation and by a strong typhoon in northern Japan. Journal of Forest Research, 16, 215-222.
    You, C., & Petty, W. H. (1991). Effects of Hurricane Hugo on Manilkara bidentata, a primary tree species in the Luqillo Experimental Forest of Puerto Rico. Biotropica, 23, 400-406.
    Zhan, R., Wang, Y., & Liu, Q. (2017). Salient differences in tropical cyclone activity over the western North Pacific between 1998 and 2016. Journal of Climate, 30, 9979-9997.
    Zhang, K., Thapa, B., Ross, M., & Gann, D. (2016). Remote sensing of seasonal changes and disturbances in mangrove forest: a case study from South Florida. Ecosphere, 7, e01366.

    下載圖示
    QR CODE