簡易檢索 / 詳目顯示

研究生: 呂雯華
LU,WEN-HUA
論文名稱: 乙醇氧化反應於鉑合金(111)表面上之理論計算研究
Computational study of ethanol oxidation reaction (EOR) on Pt-based Alloys
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 57
中文關鍵詞: 密度泛函理論乙醇氧化反應CO 毒化鉑合金
英文關鍵詞: density function theory, ethanol oxidation reaction, CO-poisoning, Pt-Alloy
DOI URL: https://doi.org/10.6345/NTNU202204493
論文種類: 學術論文
相關次數: 點閱:191下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇計算論文為乙醇氧化反應於Pt-合金(111)表面上的相關探究。本次利用計算乙醇氧化至乙醛之兩電子轉移的活化能障大小,來探究各合金催化表面的反應活性,其中研究的表面包含二元及三元合金(Pt3Sn、 Pt3Ru、 Pt3Rh、 Pt3Ag、 Pt3Au、 Pt3Pd和Pt6SnAg);從計算的結果中可得出,當添加金屬Sn、Ru或同時添加Sn及Ag來取代部分金屬Pt時,相較於純金屬Pt催化表面,可以提升其反應活性,推估是因為添加這些金屬做取代時,能增加CH3CH2O*的吸附能,藉此幫助O-H斷鍵以增加其反應活性;除此之外,本次也藉由分析EOR相關吸附物及乾淨表面的segregation energy來探討其穩定度,綜合這些結果,認為三元合金PtAgSn對乙醇氧化反應有較高的活性及穩定度,最後我們也藉由計算CO於表面上的吸附能及氧化反應來探究於乙醇氧化反應中CO 毒化對各合金表面的影響,從計算結果中,可得出一結論,即是金屬Sn或Ag的添加可以弱化CO的吸附及降低其氧化能障,藉此移除表面的CO,以達到抑制CO毒化的現象

    This thesis computationally studied the ethanol oxidation reaction (EOR) on Pt-based alloys, including Pt6SnAg, Pt3Sn, Pt3Ru, Pt3Rh, Pt3Ag, Pt3Au and Pt3Pd. The EOR activity has been estimated by computing the reaction barriers for ethanol transferring to acetaldehyde in the 2-electron oxidation reaction. The energetic result shows that dopants of Sn,Ru or both Sn and Ag can better improve the activity than pure Pt electrode, attributable to their enhanced adsorption energy for CH3CH2O* intermediates. Additionally, EOR stability has been examined by analyzing the segregation energy of the clean and EOR intermediate (CH3CH2O*/CH3CHOH*) adsorbed alloys to simulate the as-prepared and under EOR operating electrodes. The analysis finds that both Sn and Ag doped Pt alloys have better stability and survived under EOR operation. Finally, we investigated CO poisoning in EOR by computing the energies for CO adsorption and oxidation on those alloys. The energetic results indicate that Sn and Ag doped alloys have rather weaker adsorption energy and low oxidation barriers for CO; thus, can better resist for its poisoning effect.

    第一章、 序論 1 1-1 乙醇氧化反應(Ethanol Oxidation Reaction)介紹 1 1-1-1 乙醇氧化反應之機構推測 2 1-1-2 CO-毒化現象(CO-poisoning) 4 1-2 研究方向 5 第二章、 理論原理與計算方法 6 2-1 密度泛函理論-(Density functional theory,DFT) 6 2-1-1 The Kohn-Sham equation 6 2-1-2 交換相關函數(Exchange-Correlation Functions) 8 2-1-3 基底(Basis set) 8 2-1-4 布洛赫定理與平面波基組 (Bloch theorem and plane wave basis sets) 8 2-1-5 有效核勢(Pseudopotential or Effective core potential,ECP) pseudo potential 9 2-2 系統與軟體 10 2-2-1 國家高速網路與計算中心 10 2-2-2 操作軟體VASP(Vienna Ab-initio simulation Package) 10 2-3 計算流程 17 2-4 本篇計算相關參數設定及表面model的建立 18 2-4-1 計算參數設定 18 2-4-2 Surface Model 18 第三章、 鉑合金於乙醇氧化反應(Ethanol Oxidation Reaction)中的趨勢變化及CO毒化的相關理論計算研究 23 3-1 結果與討論 23 3-1-1 CH3CH2OH活化反應機制的回顧 23 3-1-2 Energy of adsorption 24 3-1-3 二元及三元鉑合金之吸附能、反應能及活化能在乙醇氧化反應相關路徑上之比較 32 3-1-4 穩定度測試 44 d E(surface) 44 3-2 CO-poisoning於各Pt-alloy表面之反應能及活化能的計算及比較 48 第四章、 結論&未來展望 52 4-1 結論 52 4-2 未來展望 54 第五章、 參考文獻 55

    (1) Huang, Z.; Zhou, H.; Li, C.; Zeng, F.; Fu, C.; Kuang, Y. J. Mater. Chem. 2012, 22, 1781.
    (2) Khan, I. A.; Badshah, A.; Haider, N.; Ullah, S.; Anjum, D. H.; Nadeem, M. A. J Solid State Electr 2014, 18, 1545.
    (3) (a) Azcarate, I.; Gutierrez, J. J.; Lazkano, A.; Saiz, P.; Redondo, K.; Leturiondo, L. A. Renew Sust Energ Rev 2016, 59, 1384(b) Corsetti, S.; McGloin, D.; Kiefer, J. Fuel 2016, 166, 488.
    (4) Jo, Y.; Sanyal, B.; Park, H. J.; Kwon, J. H. Postharvest Biol Tec 2016, 112, 170.
    (5) Lee, C. J.; Yangcheng, H. Y.; Cheng, J. J.; Jane, J. L. Starch-Starke 2016, 68, 348.
    (6) (a) Alcala, R. Journal of Catalysis 2003, 218, 178(b) Busó-Rogero, C.; Grozovski, V.; Vidal-Iglesias, F. J.; Solla-Gullón, J.; Herrero, E.; Feliu, J. M. Journal of Materials Chemistry A 2013, 1, 7068.
    (7) Castro, J. C.; Assumpção, M. H. M. T.; de Souza, R. F. B.; Spinacé, E. V.; Neto, A. O. Electrocatalysis 2013, 4, 159.
    (8) Chen, X.; Cai, Z.; Chen, X.; Oyama, M. J. Mater. Chem. A 2014, 2, 315.
    (9) Datta, J.; Dutta, A.; Mukherjee, S. The Journal of Physical Chemistry C 2011, 115, 15324.
    (10) Del Colle, V.; Souza-Garcia, J.; Tremiliosi-Filho, G.; Herrero, E.; Feliu, J. M. Physical chemistry chemical physics : PCCP 2011, 13, 12163.
    (11) Du, W.; Mackenzie, K. E.; Milano, D. F.; Deskins, N. A.; Su, D.; Teng, X. ACS Catalysis 2012, 2, 287.
    (12) Erini, N.; Loukrakpam, R.; Petkov, V.; Baranova, E. A.; Yang, R.; Teschner, D.; Huang, Y.; Brankovic, S. R.; Strasser, P. ACS Catalysis 2014, 4, 1859.
    (13) Fu, S.; Zhu, C.; Du, D.; Lin, Y. ACS applied materials & interfaces 2015, 7, 13842.
    (14) Anderson, A. B.; Asiri, H. A. Physical chemistry chemical physics : PCCP 2014, 16, 10587.
    (15) Li, W.; Zhao, X.; Manthiram, A. Journal of Materials Chemistry A 2014, 2, 3468.
    (16) Sheng, T.; Lin, X.; Chen, Z. Y.; Hu, P.; Sun, S. G.; Chu, Y. Q.; Ma, C. A.; Lin, W. F. Physical chemistry chemical physics : PCCP 2015, 17, 25235.
    (17) Zhao, L.; Wang, S.; Ding, Q.; Xu, W.; Sang, P.; Chi, Y.; Lu, X.; Guo, W. The Journal of Physical Chemistry C 2015, 119, 20389.
    (18) Silva, T. A.; Teixeira-Neto, E.; Lopez, N.; Rossi, L. M. Sci Rep 2014, 4, 5766.
    (19) Skoplyak, O.; Barteau, M. A.; Chen, J. G. Surf Sci 2008, 602, 3578.
    (20) Wang., H.-F.; Liu., Z.-P. J. AM. CHEM. SOC. 2008 130, 10996.
    (21) Vigier, F.; Coutanceau, C.; Hahn, F.; Belgsir, E. M.; Lamy, C. Journal of Electroanalytical Chemistry 2004, 563, 81.
    (22) Pereira, A. O.; Miranda, C. R. Appl Surf Sci 2014, 288, 564.
    (23) Sheng, T.; Lin, W.-F.; Hardacre, C.; Hu, P. The Journal of Physical Chemistry C 2014, 118, 5762.
    (24) Zhang, J.; Cao, X. M.; Hu, P.; Zhong, Z.; Borgna, A.; Wu, P. The Journal of Physical Chemistry C 2011, 115, 22429.
    (25) Chiu, C.-c.; Genest, A.; Rösch, N. Top Catal 2013, 56, 874.
    (26) Guo, W.; Li, M.; Lu, X.; Zhu, H.; Li, Y.; Li, S.; Zhao, L. Dalton transactions 2013, 42, 2309.
    (27) Pallassana, V.; Neurock, M. Journal of Catalysis 2002, 209, 289.
    (28) Sheng, T.; Lin, W. F.; Hardacre, C.; Hu, P. Physical chemistry chemical physics : PCCP 2014, 16, 13248.
    (29) Syu, C. Y.; Yang, H. W.; Hsu, F. H.; Wang, J. H. Physical chemistry chemical physics : PCCP 2014, 16, 7481.
    (30) Lopes, P. P.; Strmcnik, D.; Jirkovsky, J. S.; Connell, J. G.; Stamenkovic, V.; Markovic, N. Catal Today 2016, 262, 41.
    (31) Vesselli, E.; Coslovich, G.; Comelli, G.; Rosei, R. Journal of Physics: Condensed Matter 2005, 17, 6139.
    (32) Yang, M.; Rioux, R.; Somorjai, G. Journal of Catalysis 2006, 237, 255.
    (33) Spendelow, J. S.; Lu, G. Q.; Kenis, P. J. A.; Wieckowski, A. Journal of Electroanalytical Chemistry 2004, 568, 215.
    (34) Zhang, R. Q.; Kim, C. E.; Yu, B. D.; Stampfl, C.; Soon, A. Physical chemistry chemical physics : PCCP 2013, 15, 19450.
    (35) Jinnouchi, R.; Suzuki, K. K. T.; Morimoto, Y. Catal Today 2016, 262, 100.
    (36) Rao, L.; Jiang, Y. X.; Zhang, B. W.; Cai, Y. R.; Sun, S. G. Physical chemistry chemical physics : PCCP 2014, 16, 13662.
    (37) Melke, J.; Schoekel, A.; Dixon, D.; Cremers, C.; Ramaker, D. E.; Roth, C. The Journal of Physical Chemistry C 2010, 114, 5914.
    (38) Lopes, T.; Antolini, E.; Gonzalez, E. Int J Hydrogen Energ 2008, 33, 5563.
    (39) (a) Wu, F.; Zhang, D.; Peng, M.; Yu, Z.; Wang, X.; Guo, G.; Sun, Y. Angewandte Chemie 2016, 55, 4952(b) Jin, J. M.; Sheng, T.; Lin, X.; Kavanagh, R.; Hamer, P.; Hu, P.; Hardacre, C.; Martinez-Bonastre, A.; Sharman, J.; Thompsett, D.; Lin, W. F. Physical chemistry chemical physics : PCCP 2014, 16, 9432.
    (40) Kwak, D.-H.; Lee, Y.-W.; Han, S.-B.; Hwang, E.-T.; Park, H.-C.; Kim, M.-C.; Park, K.-W. Journal of Power Sources 2015, 275, 557.
    (41) Magalhães, M. M.; Colmati, F. Journal of the Brazilian Chemical Society 2014.
    (42) Nakamura, M.; Imai, R.; Otsuka, N.; Hoshi, N.; Sakata, O. The Journal of Physical Chemistry C 2013, 117, 18139.
    (43) St John, S.; Boolchand, P.; Angelopoulos, A. P. Langmuir : the ACS journal of surfaces and colloids 2013, 29, 16150.
    (44) Ren, H.; Humbert, M. P.; Menning, C. A.; Chen, J. G.; Shu, Y.; Singh, U. G.; Cheng, W.-C. Applied Catalysis A: General 2010, 375, 303.
    (45) Li, Z. S.; Lin, R. S.; Liu, Z. S.; Li, D. H.; Wang, H. Q.; Li, Q. Y. Electrochim Acta 2016, 191, 606.
    (46) Anderson, A. B.; Zhao, M. Journal of the Electrochemical Society 2015, 162, H583.
    (47) Zuo, Z.-J.; Wang, L.; Yu, L.-M.; Han, P.-D.; Huang, W. The Journal of Physical Chemistry C 2014, 118, 12890.
    (48) Lin, C.-H.; Chen, C.-L.; Wang, J.-H. The Journal of Physical Chemistry C 2011, 115, 18582.
    (49) Zhong, W.; Liu, Y.; Zhang, D. The Journal of Physical Chemistry C 2012, 116, 2994.
    (50) Fischer, M.; Jiang, X. Combust Flame 2016, 167, 274.
    (51) MacDonald, A. E.; Clack, C. T. M.; Alexander, A.; Dunbar, A.; Wilczak, J.; Xie, Y. F. Nat Clim Change 2016, 6, 526.
    (52) Asiri, H. A.; Anderson, A. B. Journal of the Electrochemical Society 2014, 162, F115.
    (53) Lazić, P.; Alaei, M.; Atodiresei, N.; Caciuc, V.; Brako, R.; Blügel, S. Physical Review B 2010, 81.
    (54) Li, H. M.; Li, G. X.; Sun, Z. Y.; Zhou, Z. H.; Li, Y.; Yuan, Y. Exp Therm Fluid Sci 2016, 74, 160.
    (55) Hu, X.; Lin, C.; Wei, L.; Hong, C.; Zhang, Y.; Zhuang, N. Electrochim Acta 2016, 187, 560.

    下載圖示
    QR CODE