簡易檢索 / 詳目顯示

研究生: 傅弼豊
論文名稱: 使用理論計算探討Tricarbonyl 8-oxyquinoline Rhenium(I) 在利用光或電催化下還原CO2形成甲醇的循環
Methanol Formation from CO2 Reduction : A Theoretical Study on the Catalytic Cycle of Tricarbonyl 8-oxyquinoline Rhenium(I) Complex
指導教授: 蔡明剛
Tsai, Ming-Kang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 124
中文關鍵詞: 二氧化碳甲醇催化羟喹啉
英文關鍵詞: Rhenium, carbon dioxide, methanol, catalyst, oxyquinoline
論文種類: 學術論文
相關次數: 點閱:207下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • [Re(8-OQN)(CO)3(CH3CN)]為目前新合出的一系列催化劑,利用8-oxyquinoline(8-OQN)取代了使用已久的2,2-Bipyridine(Bpy)配體,希望藉此改進催化的效果。在實驗的部分,還無法明確得知其還原二氧化碳之產物,但目前來說還原出甲醇是現今努力的目標,因此本篇論文便針對其可能催化還原出甲醇之循環,分別作光催化與電催化的探討,找出其最佳的催化循環,希望藉此給與實驗做參考,改進並且設計出最適當的反應條件。

    [Re(8-OQN)(CO)3(CH3CN)] is a new series of catalyst. We use the 8-Oxyquinoline (8-OQN) to replace of the 2,2-Bipyridine (Bpy) ligand , hoping to improve the catalytic efficiency. In the experimental, the product of the reductive catalysis of carbon dioxide is still unknown, but the formation of methanol is now the goal of it. In this study, we use the calculation to find out the best catalytic cycle for formation of the methanol via photocatalyst and electrocatalyst. We hoping to give a reference to the experiment, improve and design the most appropriate reaction conditions.

    目錄 i 圖目錄 iii 表目錄 vii 中文摘要 1 英文摘要 2 第一章緒論 3 1-1 前言 3 1-2 二氧化碳轉化意義與背景 5 1-3 二氧化碳還原 7 1-4 二氧化碳配位形式 8 1-5 電子轉移介紹 9 1-6 電催化與光催化反應 11 1-7 錸金屬催化劑介紹 13 1-8 形成甲醇之催化循環 16 第二章計算方法與原理 18 2-1 量子力學 18 2-2 計算化學 20 2-2-1 分子力學(Molecular Mechanics) 21 2-2-2 初始法(ab initio) 22 2-2-3 半經驗法(Semi-Empirical) 22 2-2-4 密度泛函理論(Density Functional Theory) 23 2-2-5 基底函數(Basis Set) 24 2-3 計算方法 28 2-3-1 單點能量 28 2-3-2 幾何優化 29 2-3-3振動頻率 30 2-3-4 溶劑模型 31 2-3-5 在溶液中自由能、電位與pKa的計算 33 2-3-6 激發態的計算(Excited states) 36 第三章結果與討論 38 3-1 前言 38 3-2 電催化循環 42 3-3 光催化構想 46 3-4 催化循環各中間產物的吸收光譜分析 48 3-4-1 [Re(OQN)CO] 48 3-4-2 [Re(OQN)CHO] 55 3-4-3 [Re(OQN)CH2O] 62 3-4-4 [Re(OQN)CHOH] 68 3-4-5 [Re(OQN)CH2OH] 74 3-4-6 [Re(OQN)OCH2CH3] 80 3-4-7 [Re(OQN)CO2] 86 3-4-8 [Re(OQN)COOH] 91 3-5 光催化循環可行性 97 3-5-1 [Re(OQN)CO] 98 3-5-2 [Re(OQN)CHO] 99 3-5-3 [Re(OQN)CH2O] 102 3-5-4 [Re(OQN)CHOH] 104 3-5-5 [Re(OQN)CH2OH] 107 3-5-6 [Re(OQN)OCH2CH3] 111 3-5-7 [Re(OQN)CO2] 112 3-5-8 [Re(OQN)COOH] 112 第四章結論 120 參考文獻 121

    1. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2011
    2. Time series of CO2 concentrations measured at Scripp’s Mauna Loa Observatory in November: from 1958 through 2012.
    3. 二氧化碳再利用成為新興產業之可能性,談駿嵩97.12.31
    4. 再生能源(renewable energy)發展的限制(上)國科會高瞻自然科學教學資源平台2011.8.7
    5. 光和人的知覺 OSRAM 2013
    6. ^ Benson, Eric E.; Kubiak, Cllifford P.; Sathrum, Aaron J.; Smieja, Jonathan M.; (2009). "Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels". Chemical Society Reviews38, 89–99.
    7. Saveant, J. M. Chemical Reviews2008, 108, 2348.
    8. 贡长生、序生鲁 “二氧化碳配位的活化” 天然氣化工 1990年第3期
    9. Huynh, M. H. V.; Meyer, T. J. Chem. Rev.2007, 107, 5004.
    10. Mayer, J. M. Ann. Rev. Phys. Chem2004, 55, 363.
    11. MEYER, G. J.; FUJITA, E. Acc. Chem. Res.2009, 42, 1983.
    12. Tanaka, K.; Ooyama, D. coordination chemistry review.2002, 226, 211.
    13. Kutal , C.; Weber , M. A.; Ferraudi , G.; Geiger , D. Organometallics.1985, 4 2161
    14. Hawecker , J.; Lehn , J. M.; Ziessel , R. Helv. Chim. Acta1986, 69, 1990
    15. Hori , H.; Johnson , F. P. A.; Koike , K.; Ishitani , O.; Ibusuki , T. J. Photochem. Photobiol. A Chem.1996, 96, 171
    16. Hori , H.; Koike , K.; Suzuki , Y.; Ishizuka , M.; Tanaka , J.; Takeuchi , K.; Sasaki , Y. J. Mol. Catal. A:Chemical.2002, 179 1
    17. Hori , H.; Takano , Y.; Koike , K.; Sasaki , Y. Inorg. Chem. Commun. 2003, 6, 300
    18. Helen C. Zhao, Barbara Mello, Bi-Li Fu, Hara Chowdhury, David J. Szalda, Ming-Kang Tsai, David C. Grills, and Jonathan Rochford. Organometallic2013
    19. Tanaka, K.; Nagao, H.; Mizukawa, T. Inorg. Chem.1994, 33, 3415.
    20. Cramer, C. J. Essentials of Computational Chemistry West Sussex, England ; New York, 2002.
    21. Levine, I. N. Quantum Chemistry; 3th ed. Brooklyn, New York, 1970.
    22. Lewars, E. G. Computational Chemistry Introduction to the Theory and Applications; 2th ed. Peterborough Ontario Canada, 2011.
    23. Lewars, E. Computational Chemistry:Introduction to the Theory and Applications of Molecular and Quantum Mechanics Boston, 2004.
    24. Young, D. Computational Chemistry:A Practical Guide for Applying
    Techniques to Real World Problems; 2th ed. New York, 2001.
    25. Rode, B. M.; Hofer, T. S.; Kugler, M. D. The Basics of Theoretical and
    Computational Chemistry Weinheim, 2007.
    26. Parr, R. C.; Yang, W. Annu. Rev. Phys. Chern.1995, 46, 701.
    27. Kohn, W.; Sham, L. J. Phys. Rev.1965, 140, A1133.
    28. Castro, A.; Marques, M. A. L.; Rubio, A. J. Chem. Phys.2004, 121, 3425.
    29. Leach, A. R. Molecular Modelling:Principles and Applications; 2th ed.
    Harlow, England, 2001.
    30. Hartree, D. R. Proc. Cambridge Phil. Soc.1928, 24, 89.
    31. Moller, C.; Plesset, M. S. Phys. Rev.1934, 46, 618.
    32. Binkley, J. S.; Pople, J. A. Int. J. Quant. Chem.1975, 9, 229.
    33. Shavitt, I. Mol. Phys.1998, 94, 3.
    34. Crawford, T. D.; III, H. F. S. Rev. Comput. Chem2000, 14, 33.
    35. J. A. Pople , G. A. S. J. Chem. Phys.1966, 44, 3289.
    36. Dannenberg, J. J.; Evleth, E. M. Int. J. Quant. Chem.1992, 44, 869.
    37. Stewart, J. J. P. J. Comp. Chem.1989, 10, 209.
    38. Stewart, J. J. P. J. Comp. Chem.1991, 12, 320.
    39. Stewart, J. J. P. J. Comp. Chem.1992, 10, 221.
    40. Hohenberg, P.; Kohn, W. Phys. Rev. B1964, 136, B864
    41. Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. J. Phys. Chem. A2007, 111, 10439.
    42. Ullrich, C. A.; Kohn, W. Phys. Rev. Lett.2001, 87, 093001.
    43. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys.
    Chem.1994, 98, 11623.
    44. Zhao, Y.; Truhlar, D. G. Acc. Chem. Res.2008, 41, 157.
    45. Slater, J. C. Phys. Rev.1930, 36, 57.
    46. Bouferguene, A.; Fares, M.; Hoggan, P. E. Int. J. Quant. Chem.1996, 57, 801.
    47. Gill, P. M. W. Adv Quantum Chem1994, 25, 141.
    48. Boys, S. F. Proc. R. Soc. London. Ser. A1950, 200, 542.
    49. Gill, P. M. W.; Pople, J. A. Int. J. Quant. Chem.1991, 40, 753.
    50. Hehre, W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys.1969, 51, 2657.
    51. Newton, M. D.; Lathan, W. A.; Hehre, W. J.; Pople, J. A. J. Chem. Phys.1969, 51, 3927.
    52. Boys, S. F. Proc. R. Soc. London. Ser. A1950, 200, 542.
    53. Dunning, T. H. J. Chem. Phys.1989, 90, 1007.
    54. Woon, D. E.; Dunning, T. H. J. Chem. Phys.1993, 98, 1358.
    55. Woon, D. E.; Dunning, T. H. J. Chem. Phys.1995, 103, 4572.
    56. Hay, P. J.; Wadt, W. R. J. Chem. Phys.1985, 82, 270.
    57. Wadt, W. R.; Hay, P. J. J. Chem. Phys.1985, 82, 284.
    58. Hay, P. J.; Wadt, W. R. J. Chem. Phys.1985, 82, 299.
    59. Roy, L. E.; Hay, P. J.; Martin, R. L. J. Chem. Theory Comput.2008, 4, 1029.
    60. Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaissian; Second Edition ed. Pittsburgh, PA.
    61. Tsai, M.-K.; Rochford, J.; Polyansky, D. E.; Wada, T.; Tanaka, K.; Fujita, E.;Muckerman, J. T. Inorganic Chemistry2009, 48, 4372.
    62. Tissandier, M. D.; Cowen, K. A.; Feng, W. Y.; Gundlach, E.; Cohen, M. H.; Earhart, A. D.; Coe, J. V.; Tuttle, T. R. J. Phys. Chem. A1998, 102, 7787.
    63. Sadlej-Sosnowska, N. Theor. Chem. Acc.2007, 118, 281.
    64. Marenich, A. V.; Olson, R. M.; Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput.2007, 3, 2011.
    65. Jaque, P.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. C2007, 111, 5783.
    66. Hay, P. J.; Wadt, W. R. J. Chem. Phys.1985, 82, 299.
    67. H. Kunkely;A. Vogler. Photoluminescence of8-quinolinato(tetracarbonyl)rhenium(I), Inorganic ChemistryCommunications1998, 1 (10), 398-401.

    下載圖示
    QR CODE