研究生: |
鄭嘉鴻 Chia-Hung Cheng |
---|---|
論文名稱: |
數位學習環境與鷹架策略對國中凸透鏡成像單元學習成效與動機之影響 The Effects of Digital Learning Environment and Scaffolding Strategies on Junior High School Students’ Performance in and Motivation toward Learning of Convex Lens Image Forming |
指導教授: |
陳明溥
Chen, Ming-Puu |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 113 |
中文關鍵詞: | 凸透鏡成像課程 、擴增實境 、鷹架策略 、體驗式學習 |
英文關鍵詞: | Convex lens image forming learning, digital learning environment, scaffolding strategies, experiential learning cycle |
論文種類: | 學術論文 |
相關次數: | 點閱:218 下載:27 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨探討在不同的數位學習環境 (擴增實境、虛擬環境)及鷹架策略(程序鷹架、反思鷹架)對於學習者在自然科凸透鏡成像單元的學習成效與學習動機之影響。本實驗研究對象為國中一年級學生,研究設計採因子設計之準實驗研究,自變項為「數位學習環境」及「鷹架策略」,有效樣本為103人。數位學習環境依照環境的不同分為「擴增實境」及「虛擬實境」;鷹架策略依照提示方式不同分為「程序鷹架」及「反思鷹架」。依變項為該單元之學習成效及學習動機。
研究結果發現:(1) 就知識理解而言,擴增實境組學習者搭配反思鷹架在知識理解表現上優於虛擬實境組學習者搭配反思鷹架,而虛擬實境組學習者搭配程序鷹架在知識理解表現上優於虛擬實境搭配反思鷹架組學習者;就知識應用而言,學習者在擴增實境學習環境中比起虛擬實境學習環境有更好的知識應用表現,而學習者在程序鷹架策略中比起反思鷹架策略有更好的知識應用表現;(2) 在動機方面,學習者在不同的數位學習環境皆抱持正向的學習動機,其中擴增實境學習者有較高的參與動機表現。
The purpose of this study was to investigate the effects of different digital learning environments and scaffolding strategies on junior high school students’ performances in and motivation toward learning of convex lens image forming concepts. A quasi-experimental design was employed and the independent variables were types of digital learning environments and scaffolding strategies. While the digital learning environments consisted of the augmented reality and the virtual reality environments, the scaffolding strategies were the procedural scaffolding and the metacognitive scaffolding. The dependent variables were the students’ learning performance and motivation. The participants were 113 seventh graders and the effective sample size was 103.
The results revealed that (a) for knowledge comprehension performance, the augmented reality group outperformed the virtual reality group while using the metacognitive scaffolding, and the procedural scaffolding group outperformed the metacognitive scaffolding group while using the virtual reality environment; for knowledge application performance, the augmented reality group outperformed the virtual reality group, and the procedural scaffolding group outperformed the metacognitive scaffolding group; (b) as for learning motivation, participants showed positive motivation toward the employed learning environments and the augmented reality group revealed higher degree motivation than the virtual reality group.
中文部分
任欣垚(2012)。數位學習環境溶入體驗式學習策略與先備知識對國小學生質因數概念學習之影響。國立臺灣師範大學資訊教育研究所碩士論文,未出版,臺北市。
何嘉峻(2003)。國二;國三不同性別學生光學迷思概念之研究。國立嘉義大學科學教育研究所碩士論文。
李采褱(2003)。國小中高年級學童光迷思概念研究。屏東師範學院數理教育研究所碩士論文。
李紋綺(2005)。鷹架國小學童英語科自我調整學習之研究。未出版之碩士論文,國立花蓮教育大學,花蓮市。
林哲宇(2010)。ARCS融入體驗式學習之學習活動中目標導向與教學策略對國小生電腦技能學習之影響。國立臺灣師範大學資訊教育研究所碩士論文,未出版,臺北市。
柯俊宇、賴榮裕(2012)。大學生對於平板電子教科書應用之轉換行為。臺東大學綠色科學學刊,2(2),55-78。
科學發展(2013)。美國教改2061計畫。取自
http://ejournal.stpi.narl.org.tw/NSC_INDEX/Journal/EJ0001/10206/10206-12.pdf
高雄市政府教育局網站。體驗學習之源起及意義。取自http://www.ccunix.ccu.edu.tw/~shlin/Service%20Learning/experience%20learning.pdf
唐 明(2001)。國小五年級學童光概念及相關迷思概念之研究。臺北市立師範學院數理教育研究所碩士論文(未出版)。
許燕欣(2013)。不同數位模擬對國小電磁作用單元體驗式學習之成效與動機的影響。國立臺灣師範大學資訊教育研究所碩士論文,未出版,臺北市。
陳忠志(1989)。大一學生物理學錯誤概念之研究(Ⅱ)光學錯誤概念。行政院國家科學委員會專案計劃成果報告NSC77-0111-S017-005-D。
陳均伊、張惠博、郭重吉(2004)。光反射與折射的另有概念診斷工具之發展與研究。科學教育學刊,12(3),311-340。
陳宜均(2012)。互動式教材的介面設計與使用性之研究。國立臺北教育大學數位科技設計學系玩具與遊戲設計碩士班碩士論文
黃志賢(2006)。結合可能發展區與鷹架之教學方案於原住民高職學生數學文字符號概念改變之研究。科學教育學刊,14(4),467-491。
孫春在、林珊如(2007)。網路合作學習:數位時代的互動學習環境、教學與評量。台北市:心理出版社。
張鳳琴(1994):高雄地區公立高中學生對科學知識的本質的看法。國立師範大學科學教育研究所碩士論文。
張春興(2004)。教育心理學-三元化取向的理論與實務。臺北市:東華書局。
董家莒(2000)。問題解決為基礎之電腦輔助教學成效。未出版之碩士論文,國立臺灣師範大學地球科學研究所,台北。
楊明獻(2008)。改進國中理化課程教學–以「光的折射」單元為例。科學教育月刊,306,27-42。
劉昌宏、郭重吉(1995)。教科書在國中理化教學中的應用之個案研究。科學教育,6,89-112。
臺灣PISA國家研究中心(2011)。科學應試指南。取自 http://pisa.nutn.edu.tw/download/sample_papers/2009/2011_1205_guide_science.pdf
臺灣PISA國家研究中心(2011)。臺灣參加PISA 2006成果報告。取自 http://pisa.nutn.edu.tw/download/2006pisa/2006PISA.pdf
臺灣PISA國家研究中心(2011)。臺灣PISA 2009精簡報告。取自 http://pisa.nutn.edu.tw/download/data/TaiwanPISA2009ShortReport.PDF
蔡福興、游光昭、蕭顯勝(2008)。從新學習遷移觀點發掘數位遊戲式學習之價值。課程與教學季刊,11(4),237-278。
蔡承哲 (2013)。擴增實境與鷹架教學策略對高中數學空間單元學習成效與動機之影響。國立臺灣師範大學資訊教育研究所碩士論文,未出版,臺北市。
竇一龍(2002)。高一學生凸透鏡折射成像另有架構類型與成因。國立高雄師範大學物理研究所碩士論文。
英文部分
Arvanitis, T. N., Petrou, A., Knight, J. F., Savas, S., Sotiriou, S., & Gargalakos, M., (2007). Human factors and qualitative pedagogical evaluation of a mobile augmented reality system for science education used by learners with physical disabilities. Personal and Ubiquitous Computing, 13(3), 243–250.
Azuma, R. T. (1997). A survey of augmented reality. Presence-Teleoperators and Virtual Environments, 6(4), 355-385.
Barab, S. A., Scott, B., Siyahhan, S., Goldstone, R., Ingram-Goble, D., Zuiker, S. J., & Warren, S. (2009). Transformational play as a curricular scaffold: using videogames to support science education. Journal of Science Education Technology, 18, 305-320.
Betz, J. A. (1995). Computer games: Increase learning in an interactive
multidisciplinary environment. Journal of Educational Technology Systems, 24(2), 195-205.
Billinghurst, M. (2003). Augmented reality in education. Retrieved from: http://www.newhorizons.org/strategies/technology/billinghurst.htm
Bodrova, E. & Leong, D. J.(1996). Tools of mind: The Vygotskian approach to early childhood education.
Cai, S., Chiang, F. K., & Wang, X. (2012). Using the augmented reality for convex imaging experiment. Science Technology, Engineering and Mathematics in Educational Conference.
Cheng, C. H., & Su, C. H. (2012). A game-based learning system for improving student’s learning effectiveness in system analysis course. Social and Behavioral Sciences, 31, 669-675.
Cheok, A. D., Hwee, G. K., Wei, L., Teo, J., Lee, T. S., Farbiz, F., & Ping, L. S. (2004). Connecting the real world and virtual world through gaming. IFIP
International Federation for Information and Communication Technology, 156, 45-50.
Coker, D. R. & White, J. (1993). Selecting and applying learning Theory to classroom teaching strategie. Education, 114(1), 77-80.
Cuendet, D., Bonnard, Q., Do-Lenh, S., & Dillenbourg, P. (2013). Designing augmented reality for the classroom. Computers & Education. Doi: 10.1016/j.compedu.2013.02.015.
Davis, E. A. (2000). Scaffolding students'knowledge integration: Prompts for reflection in KIE. International Journal of Science Education, 22(8), 819-837.
De Jong, T., & W.R, V. J. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(2), 179-201.
Doolittle, P. E. (1988). Understanding cooperative learning through Vygotsky's zone of proximal development.
Echeverría, A., Améstica, M., Gil, F., Nussbaum, M., Barrios, E., & Leclerc, S. (2012). Exploring different technological platforms for supporting co-located collaborative games in the classroom. Computers in Human Behavior, 28(4), 1170-1177.
Enyedy, N., Danish, J. A., Delacruz, G., & Kumar, M. (2012). Learning physics
through play in an augmented reality environment. International Journal of
Computer-supported Collaborative Learning, 7(3), 347–378.
Fiorentino, M., E-Uva, A., Gattullo, M., Debernardis, S., & Monno, G. (2014). Augmented reality on large screen for interactive maintenance instructions. Computers in Industry, 55, 428-437.
Galili, I., & Hazan, A. (2000). Learners' knowledge in optics: Interpretation, structure and analysis. International Journal of Science Education, 22(1), 57-88.
Gillispie, L., Martin, F., & Parker, M. A. (2010). Effects of a 3-D video game on
middle school student achievement and attitude in mathematics. Electronic
Journal of Mathematics and Technology, 4(1), 68-80.
Goldberg, F. M., & McDermott, L. C. (1986). Student Difficulties in Uderstanding Image Formation by a Plane Mirror. The Physics Teacher, 4, 72-80.
Gorghiu, L. M., Gorghiu, G., Dumitrescu, C., Olteam, R. L., Bîzoib, M., & Suducb, A. M. (2010). Implementing virtual experiments in sciences education - challenges and experiences achieved in the frame of VccSSe comenius 2.1. project. Procedia - Social and Behavioral Sciences, 2(2), 2952-2956.
Gorsky, P., & Finegold, M. (1994). The role of anomaly and of cognitive dissonance
in restructuring students’ concepts of force. Instructional Science, 22, 75–90.
Healey, M., & Jenkins, A. (2000). Kolb's experiential learning theory and its
application in geography in higher education. Journal of Geography, 99(5),
185-195.
Henderson, D., Fisher, D. & Fraser, B. (2000). Interpersonal behavior laboratory learning environments and student outcomes in senior biology classes. Journal of Research in Science Teaching, 37, 26–43.
Hill, J. R., & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology Research and Psychology, 33(4), 875-893.
Huang, C. (2005). Designing high-quality interactive multimedia learning modules. Computerized Medical Imaging and Graphics 29(1), 223-233.
Hoffman, B., & Spatariu, A. (2008). The influence of self-efficacy and metacognitive
prompting on math problem-solving effciency. Contemporary Educational Psychology, 33(4), 875-893.
Ibanez, B. M., Serio, D. A., Villaran, D., & Kloos, D. C. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71 , 1-13.
Impact on flow student experience and educational effectiveness
Imbert, N., Vignat, F., Kaewrat, C., & Boonbrahm, P. (2013). Adding physical properties to 3D models in augmented reality for realistic interactions experiments. Procedia Computer Science, 25(1)364-369.
Ke, F. F. (2008). Alternative goal structures for computer game-based learning. Computer-Supported Collaborative Learning, 3(4), 429–445.
Kebritchi, M. & Hirumi, A. (2008). Examining the pedagogical foundations of moderneducational computer games. Computers & Education, 51(4), 1729-1743.
Kiili, K. & Lainema, T. (2006). Evaluations of an experiential gaming model: The
real game case. Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications, 20, 2343-2350.
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. New Jersey: Prentice-Hall.
Klopfer, E., & Squire, K. (2008). Environmental detectives: The development of an augmented reality platform for environmental simulations. Educational Technology Research and Development, 56(2), 203–228.
Klopfer, E., & Sheldon, J. (2010). Augmenting your own reality: student authoring of
science-based augmented reality games. New Directions for Youth Development,
128, 85–94.
Lee, K. (2012). The future of learning and training in augmented reality. InSight: A Journal of Scholarly Teaching, 7, 31-42.
Loureiro, A., & Bettencourt, T. (2014). The use of virtual environments as an extended classroom - a case study with adult learners in tertiary education. Procedia Technology 13(1), 97-106.
Lowrie, T., & Jorgensen, R. (2011). Gender differences in students’ mathematics game playing. Computers & Education, 57(4), 2244-2248.
Lopez-Morteo, G., & Lo'pez, G. (2007). Computer support for learning mathematics: A learning environment based on recreational learning objects. Computers & Education, 48(4), 618-641.
Merchant, Z., Goetz, E. T., Kennicutt, W. K., Kwok, O. M., Cifuentes, L., & Davis, T. J. (2012). The learner characteristics, features of desktop 3D virtual reality environments, and college chemistry instruction: A structural equation modeling analysis. Computers & Education, 59(1), 551-568.
Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: A class of displays on the reality-virtuality continuum. International Society for Optics and Photonics, 20, 282-292.
Molenaar, I., Roda, C., Boxtel, C. V., & Sleegers, P. (2012). Dynamic scaffolding of socially regulated learning in a computer-based learning environment.,59(2), 515-523
Morcom, V. (2014). Scaffolding social and emotional learning in an elementary classroom community: A sociocultural perspective. International Journal of Educational Research, 67(1), 18-29.
Nikou, C., Digioia III, A. M., Blackwell, M., Jaramaz, B., & Kanade, T. (2000). Augmented reality imaging technology for orthopaedic surgery. Operative Techniques in Orthopaedics, 10(1), 82-86.
Ohio:Merrill Kim, M. C., & Hannafin, M. J. (2011). Scaffolding problem solving in
technology-enhanced learning environments (TELEs): Bridging research and theory with practice. Computer & Education, 56, 403-417.
O’Neil, H. F., Waines, R., & Baker, E. L. (2005). Classification of learning outcomes: evidence from the computer games literature. The Curriculum Journal, 16(4), 455-474.
Prensky, M. (2007). Digital game-based learning. New York: McGraw-Hill.
Rastegarpour, H., & Marashi, P. (2012). The effect of card games and computer games on learning of chemistry concepts. Social and Behavioral Sciences, 31, 597-601.
Rienties, B., Giesbers, B., Tempelaar, D., Baker, L. S., Segers, M., & Gijselaers, W. (2012). The role of scaffolding and motivation in CSCL. Computer & Education, 59, 893-906.
Roach, L. E. & Wandersee, J. H. (1995). Putting People Back into Science: Using Historical Vignettes. School Science and Mathematics, 95(7), 365-370.
Saorin, J. L., Torre, J. D., Martin, N., & Carbonell, C. (2013). Spatial Training using Digital Tablets. Socail and Behavioral Sciences 93(1), 1593-1597.
Shaffer, D. W., Squire, K., Halverson, R., & Gee, J. P. (2005). Video games and the future of learning. Phi Delta Kappan, 87(2), 104-111.
Simsek, M., & Dogru, I. A. (2014). Tablet Pc Based Classroom. Socail and Behavioral Sciences 116(1), 4246-4249.
Sweetser, P., & Wyeth, P. (2005). GameFlow: A model for evaluating player enjoyment in games. ACM Computer in Entertainment, 3(3), 1-24.
Stalbrandt, E. E., & Hössjer, A. (2006). Scaffolding and Interventions between students and teachers in a learning design sequence, FORMATEX 2006.
Tatli, Z., & Ayas, A. (2010). Virtual laboratory applications in chemistry education. Social and Behavioral Sciences, 9, 938-942.
Von Der PüTten, A. M., Klatt, J., Broeke, S. T., McCall, R., Krämer, N. C., Wetzel, R., Blum, L., Oppermann, L., & Klatt, J. (2012). Subjective and behavioral presence measurement and interactivity in the collaborative augmented reality game TimeWarp. Interacting with Computers. 24(4), 317-325.
Wabel, S., Bockholt, U., Engelke, T., Gavish, N., Olbrich, M & Preusche, C. (2013). An augmented reality training platform for assembly and maintenance skills. Robotics and Autonomous Systems, 61, 398-403.
Wen, R., Tay, W., Nguyen, B., Chng, C., & Chui, C. (2014). Hand gesture guided robot-assisted surgery based on a direct augmented reality interface. Computer methods and programs in biomedicine. Doi: 10.1016/j.cmpb.2013.12.018.
Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89-100.
Wu, H. K., Lee, W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status,
opportunities and challenges of augmented reality in education. Computer & Education, 62, 41-49.