簡易檢索 / 詳目顯示

研究生: 許振銘
Chen-Ming Hsu
論文名稱: 評估SAHA及L-BMX對SCA17小鼠之治療潛力
Evaluation of the therapeutic potential of SAHA and L-BMX on SCA17 mice
指導教授: 謝秀梅
Hsieh, Hsiu-Mei
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 71
中文關鍵詞: 脊隨小腦萎縮症組蛋白去乙烯酶
英文關鍵詞: SCA17, HDAC inhibitor, SAHA
論文種類: 學術論文
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脊隨小腦萎縮症第十七型(SCA17)是一種晚發型的神經退化性疾病,造成疾病的原因是因為人類第六對染色體上面TATA-box binding protein (TBP) 這個基因有不正常CAG/CAA三核甘酸擴增的現象,進而導致轉譯出對於細胞有毒的polyQ蛋白,而使得中樞神經性統的細胞死亡。SCA17臨床上的病症類似於漢丁頓是舞蹈症(HD),病人會有運動失調、肌張力不足、認知障礙、精神疾病、失智症及舞蹈症等等。
    目前有一些治療的方針是針對基因的調控做標的,像是核染色質的乙烯化,就廣泛的被應用在癌症的研究上。在先前的研究中,不管是在動物體或是細胞研究中,組蛋白去乙烯酶的抑制物(HDACi)被發現具有神經保護的功效,因此我們想研究這個治療方式是否也是有利於SCA17的治療,我們選用了兩支抑制物,SHAH是臨床上已經在使用的藥物,以及另一支新穎的HDAC抑制物L-BMX。
    在我們的結果中顯示,長期投予這兩支HDAC抑制物,對於SCA17皆有輕微的治療成效,在病理組織切片的分析中,我們發現投予藥物後,小鼠腦部發炎的情況有顯著的改善,而小鼠運動行為分析上,在比較和緩的分析實驗中,我們可以看到小鼠的步伐以及平衡木上的平衡測試,也都有輕微改善的結果。因此,這兩支藥物確實對於SCA17小鼠的治療有輕微的成效。
    此外,我們也另外做了SACA17小鼠早期的病理分析以及小腦中各種細胞的超微結構觀察,發現Purkinje cell細胞除了細胞核有不規則萎縮的情況外,在軸突的部分也有明顯的結構鬆脫,可能會進而導致訊號傳遞的失常及細胞死亡;另外我們也發現早期小鼠腦部發炎的狀況,也可能引起神經細胞的壓力而導致其死亡。

    Spinocerebellar ataxias (SCA) 17, is a late onset neurodegenerative disease caused by abnormal CAG/CAA overexpansion in the coding region of the TATA-box binding protein (TBP) gene on chromosome 6q27. The N-terminal polyglutamine (polyQ) overexpansion of TBP leads to intercellular toxicity in central nervous system. The symptoms of SCA17 patients are similar to that of Huntington’s disease (HD), including ataxia, seizure, cognitive dysfunctions, psychiatric symptoms, dystonia, and chorea.
    The epigenetic regulation of chromatin modification, such as histone acetylation, is widely used in cancer therapy. In recently study, histone deacetylase inhibitors (HDACi) was shown to play a role in neuron protection both in vivo and in vitro. In this study, we applied a widely-used HDACi, suberoylanilide hydroxamic acid (SAHA), and a novel HDACi, L-BMX, on the hTBP-109Q transgenic (TG) mice to assess their therapeutic potential on SCA17.
    Our preliminary result showed these two HDACi treatment have mild therapeutic effect on cerebella pathology of transgenic mice through immunostaining analyses. Behavior test with rotarod showed that animals could not benefit from the long-term treatment of these two HDACi compounds. However, under the low strength behavior tests, footprint and beam test, mice showed better performance with SAHA or L-BMX treatment than the non-treated TG control mice. These results revealed that SAHA and L-BMX might have mild beneficial effect on SCA17 mice.
    In addition, to further elucidate the neuropathology of the hTBP-109Q transgenic mice, we used immunofluorescent staining and electron microscope (EM) analyses to study the pathological profile of mouse cerebellum and Purkinje cells, respectively. These data should provide us more information for the pathogenesis and therapeutic design for SCA17.

    Abbreviation list 1 Abstract 2 Introduction 4 Material and method 10 Result 14 Discussion 19 Reference 23 Table 31 Figure 32

    Ajmone-Cat MA, Cacci E, Ragazzoni Y, Minghetti L, Biagioni S (2010) Pro-gliogenic effect of IL-1alpha in the differentiation of embryonic neural precursor cells in vitro. Journal of neurochemistry 113:1060-1072.
    Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circulation research 100:1512-1521.
    Altman J, Bayer SA (1997) Development of the cerebellar system : in relation to its evolution, structure, and functions. Boca Raton: CRC Press.
    Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nature reviews Neuroscience 6:297-311.
    Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nature reviews Neuroscience 10:670-681.
    Chang YC, Lin CY, Hsu CM, Lin HC, Chen YH, Lee-Chen GJ, Su MT, Ro LS, Chen CM, Hsieh-Li HM (2011) Neuroprotective effects of granulocyte-colony stimulating factor in a novel transgenic mouse model of SCA17. Journal of neurochemistry 118:288-303.
    Daughters RS, Tuttle DL, Gao W, Ikeda Y, Moseley ML, Ebner TJ, Swanson MS, Ranum LP (2009) RNA gain-of-function in spinocerebellar ataxia type 8. PLoS genetics 5:e1000600.
    Dohlinger S, Hauser TK, Borkert J, Luft AR, Schulz JB (2008) Magnetic resonance imaging in spinocerebellar ataxias. Cerebellum 7:204-214.
    Donmez G, Guarente L (2010) Aging and disease: connections to sirtuins. Aging cell 9:285-290.
    Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, Hersch SM (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 23:9418-9427.
    Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH (2007) Recovery of learning and memory is associated with chromatin remodelling. Nature 447:178-182.
    Friedman MJ, Wang CE, Li XJ, Li S (2008) Polyglutamine expansion reduces the association of TATA-binding protein with DNA and induces DNA binding-independent neurotoxicity. The Journal of biological chemistry 283:8283-8290.
    Friedman MJ, Shah AG, Fang ZH, Ward EG, Warren ST, Li S, Li XJ (2007) Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nature neuroscience 10:1519-1528.
    Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai LH (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55-60.
    Harding AE (1982) The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the 'the Drew family of Walworth'. Brain : a journal of neurology 105:1-28.
    Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PA, Steffan JS, Marsh JL, Thompson LM, Lewis CM, Marks PA, Bates GP (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America 100:2041-2046.
    Huang S, Ling JJ, Yang S, Li XJ, Li S (2011) Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor. Brain : a journal of neurology 134:1943-1958.
    Inoue K, Tsuda M (2009) Microglia and neuropathic pain. Glia 57:1469-1479.
    Jack C, Ruffini F, Bar-Or A, Antel JP (2005) Microglia and multiple sclerosis. Journal of neuroscience research 81:363-373.
    Kaindl AM, Favrais G, Gressens P (2009) Molecular mechanisms involved in injury to the preterm brain. Journal of child neurology 24:1112-1118.
    Kim HJ, Leeds P, Chuang DM (2009) The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. Journal of neurochemistry 110:1226-1240.
    Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Human molecular genetics 8:2047-2053.
    Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F, Bluethmann H, Faergeman NJ, Meldgaard M, Deierborg T, Finsen B (2009) Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. The Journal of neuroscience : the official journal of the Society for Neuroscience 29:1319-1330.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787-795.
    Manto MU (2005) The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4:2-6.
    Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nature reviews Cancer 1:194-202.
    Marks PA, Dokmanovic M (2005) Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert opinion on investigational drugs 14:1497-1511.
    Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Molecular biology of the cell 16:4623-4635.
    Moisse K, Strong MJ (2006) Innate immunity in amyotrophic lateral sclerosis. Biochimica et biophysica acta 1762:1083-1093.
    Morgan D (2009) The role of microglia in antibody-mediated clearance of amyloid-beta from the brain. CNS & neurological disorders drug targets 8:7-15.
    Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Human molecular genetics 10:1441-1448.
    Napoli I, Neumann H (2009) Microglial clearance function in health and disease. Neuroscience 158:1030-1038.
    Ozol K, Hayden JM, Oberdick J, Hawkes R (1999) Transverse zones in the vermis of the mouse cerebellum. The Journal of comparative neurology 412:95-111.
    Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66:1638-1643.
    Reid SJ, Rees MI, van Roon-Mom WM, Jones AL, MacDonald ME, Sutherland G, During MJ, Faull RL, Owen MJ, Dragunow M, Snell RG (2003) Molecular investigation of TBP allele length: a SCA17 cellular model and population study. Neurobiology of disease 13:37-45.
    Renthal W, Maze I, Krishnan V, Covington HE, 3rd, Xiao G, Kumar A, Russo SJ, Graham A, Tsankova N, Kippin TE, Kerstetter KA, Neve RL, Haggarty SJ, McKinsey TA, Bassel-Duby R, Olson EN, Nestler EJ (2007) Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56:517-529.
    Ryu H, Smith K, Camelo SI, Carreras I, Lee J, Iglesias AH, Dangond F, Cormier KA, Cudkowicz ME, Brown RH, Jr., Ferrante RJ (2005) Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. Journal of neurochemistry 93:1087-1098.
    Savchenko VL, McKanna JA, Nikonenko IR, Skibo GG (2000) Microglia and astrocytes in the adult rat brain: comparative immunocytochemical analysis demonstrates the efficacy of lipocortin 1 immunoreactivity. Neuroscience 96:195-203.
    Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-Hartl M, Hartl FU (2004) Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Molecular cell 15:95-105.
    Shah AG, Friedman MJ, Huang S, Roberts M, Li XJ, Li S (2009) Transcriptional dysregulation of TrkA associates with neurodegeneration in spinocerebellar ataxia type 17. Human molecular genetics 18:4141-4152.
    Shiwaku H, Yoshimura N, Tamura T, Sone M, Ogishima S, Watase K, Tagawa K, Okazawa H (2010) Suppression of the novel ER protein Maxer by mutant ataxin-1 in Bergman glia contributes to non-cell-autonomous toxicity. The EMBO journal 29:2446-2460.
    Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Zhu YZ, Greenwald M, Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739-743.
    Stevanin G, Brice A (2008) Spinocerebellar ataxia 17 (SCA17) and Huntington's disease-like 4 (HDL4). Cerebellum 7:170-178.
    Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, Saudou F, Weber C, David G, Tora L, et al. (1995) Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378:403-406.
    Tsai LK, Tsai MS, Ting CH, Li H (2008) Multiple therapeutic effects of valproic acid in spinal muscular atrophy model mice. J Mol Med (Berl) 86:1243-1254.
    Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature neuroscience 9:519-525.
    van Roon-Mom WM, Reid SJ, Faull RL, Snell RG (2005) TATA-binding protein in neurodegenerative disease. Neuroscience 133:863-872.
    Voelter-Mahlknecht S, Ho AD, Mahlknecht U (2005) Chromosomal organization and localization of the novel class IV human histone deacetylase 11 gene. International journal of molecular medicine 16:589-598.
    Weinstein JR, Koerner IP, Moller T (2010) Microglia in ischemic brain injury. Future neurology 5:227-246.
    Whaley NR, Fujioka S, Wszolek ZK (2011) Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics. Orphanet journal of rare diseases 6:33.
    Yadav A, Collman RG (2009) CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology 4:430-447.
    Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nature reviews Molecular cell biology 9:206-218.
    Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annual review of neuroscience 23:217-247.
    Zuhlke C, Hellenbroich Y, Dalski A, Kononowa N, Hagenah J, Vieregge P, Riess O, Klein C, Schwinger E (2001) Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. European journal of human genetics : EJHG 9:160-164.

    下載圖示
    QR CODE