研究生: |
李智傑 |
---|---|
論文名稱: |
西北太平洋颱風動力降尺度模擬及其氣候變遷推估 dynamical downscaling of tropical cyclone activity and their future projection using the IPRC regional climate model |
指導教授: | 陳正達 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 熱帶氣旋 、降尺度模擬 、氣候變遷 |
論文種類: | 學術論文 |
相關次數: | 點閱:134 下載:19 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於西北太平洋地區而言,熱帶氣旋是極具威脅性的天氣系統,常造成財物損失及危害生命安全;因此,增進對於熱帶氣旋的研究是非常重要的。近年來,關於全球暖化的議題,也逐漸受到重視。
而過去的研究大多提升模式內的二氧化碳濃度來模擬暖化的環境,在本次研究中則是利用Coupled Model Intercomparison Project Phase 5(CMIP5)的氣候模式資料作為初始場,並透過International Pacific Research Center的regional climate model作降尺度模擬。首先,會利用歐洲中長期預報中心所提供之30年再分析資料進行模式評估。結果顯示,模式有將環境場再現的能力,且熱帶氣旋的個數及生成位置都能有與觀測相似的結果。
接著,透過Root mean square error挑選出CMIP5中與實際觀測較相似的NCAR Community Climate System Model version 4 (CCSM4)模式結果對於兩組情境進行降尺度模擬,藉此比較出氣候變遷的差異。環境暖化的情境下,大氣底層顯著的增溫造成季節環流的改變,也使得雨量趨於集中在熱帶對流區。在未來熱帶氣旋雖然主要的生成位置變化不大;但在主要生成月7-10月平均生成個數則有顯著增加。在暖化情境下,熱帶氣旋數量上有增加的趨勢,而最大強度在20 m/s以下的熱帶氣旋數量上變化不大,但其他強度的熱帶氣旋數量上都有明顯增加的情形。由於高強度的熱帶氣旋增加,也使得熱帶氣旋所能挾帶的水氣增加,造成在未來熱帶氣旋所伴隨的雨勢也會有所增強。
Bengtsson, L., Böttger, H., amd Kanamitsu, M. , 1982: Simulation of hurricane‐type vortices in a general circulation model. Tellus, 34, 440-457.
Bengtsson, L., 1996: Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 57–73.
Bister, M., and Emanuel, K. A. , 2002a: Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi:10.1029/2001JD000776.
Bister, M., and Emanuel, K. A. , 2002b: Low frequency variability of tropical cyclone potential intensity. 2. Climatology for 1982–1995. J. Geophys. Res., 107, 4621, doi:10.1029/2001JD000780
Broccoli, A. J., and Manabe, S. , 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophysical Research Letters, 17, 1917-1920.
Camargo, S. J., Li, H., and Sun, L. , 2007b: Feasibility study for downscaling seasonal tropical cyclone activity using the NCEP regional spectral model. International journal of climatology, 27, 311-325.
Chan, J. C., and Liu, K. S. , 2004: Global warming and western North Pacific typhoon activity from an observational perspective. Journal of Climate, 17, 4590-4602.
Chia, H. H., and Ropelewski, C. F. , 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. Journal of Climate, 15, 2934-2944.
Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere–atmosphere transfer scheme (BATS) version 1 as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-3871STR, National Center for Atmospheric Research, Boulder, CO, 72 pp.
Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–719.
Emanuel, K. , 2001: Contribution of tropical cyclones to meridional heat transport by the oceans. Journal of Geophysical Research: Atmospheres (1984–2012), 106, 14771-14781.
Emanuel, K., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483–485.
Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700.
Haarsma, R. J., Mitchell, J. F., and Senior, C. A. , 1993: Tropical disturbances in a GCM. Climate Dynamics, 8, 247-257.
Holland, 1997: The maximum potential intensity of tropical cyclones.J. Atmos. Sci., 54, 2519–2541.
IPCC, 2007: Summary for Policymakers, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
Knutson, T. R., Sirutis, J. J., Garner, S. T., Held, I. M., and Tuleya, R. E. , 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bulletin of the American Meteorological Society, 88, 1549-1565.
Manabe, S., Holloway Jr, J. L., and Stone, H. M. , 1970: Tropical circulation in a time-integration of a global model of the atmosphere. Journal of the Atmospheric Sciences, 27, 580-613.
Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 2699–2721.
Nguyen, K. C., and K. J. E. Walsh, 2001: Interannual, decadal, and transient green-house simulation of tropical cyclone-like vortices in a regional climate model of the South Pacific. J. Climate, 14, 3043–3054.
Nordeng, T. E., 1995: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the Tropics. ECMWF Research Department Tech. Memo. 206, 41 pp.
Oouchi, K., Yoshimura, J., Yoshimura, H., Mizuta, R., Kusunoki, S., and Noda, A. , 2006:. Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. Journal of the Meteorological Society of Japan. Ser. II, 84, 259-276.
Stowasser, M., Wang, Y., and Hamilton, K. , 2007: Tropical cyclone changes in the western North Pacific in a global warming scenario. Journal of climate, 20, 2378-2396.
Sugi, M., A. Noda, and N. Sato, 2002: Influence of the global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249–272.
Sun, Z., and K. Shine, 1994: Studies of the radiative properties of ice and mixed phase clouds. Quart. J. Roy. Meteor. Soc., 120, 111–137.
Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800.
Tsutsui, J., 2002: Implications of anthropogenic climate change for tropical cyclone activity: A case study with the NCAR CCM2. J. Meteor. Soc. Japan, 80, 45–65.
Vitart, F., Anderson, J. L., Stockdale, T. N., and Molteni, F. Coauthors, 2007: Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophys. Res. Lett, 34, L16815.
Wang, B., and Chan, J. C. , 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. Journal of Climate, 15, 1643-1658.
Wang, Y. , 2001: An Explicit Simulation of Tropical Cyclones with a Triply Nested Movable Mesh Primitive Equation Model: TCM3. Part I: Model Description and Control Experiment. Monthly weather review, 129, 1370-1394.
Wang, Y. , 2002a: An Explicit Simulation of Tropical Cyclones with a Triply Nested Movable Mesh Primitive Equation Model: TCM3. Part II: Model Refinements and Sensitivity to Cloud Microphysics Parameterization. Monthly weather review, 130, 3022-3036.
Wang, Y. , 2002b: Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part I: Overall Structure, Potential Vorticity, and Kinetic Energy Budgets. Journal of the atmospheric sciences, 59, 1213-1238.
Wang, Y. , 2002c: Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part II: The Role in Tropical Cyclone Structure and Intensity Changes. Journal of the atmospheric sciences, 59, 1239-1262.
Wang, Y., Sen, O. L., and Wang, B. , 2003: A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 Severe Precipitation Event over China. Part I: model description and verification of simulation. Journal of climate, 16, 1721-1738.
Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H. R. , 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844-1846.
Zhan, R., Wang, Y., and Lei, X. , 2011: Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. Journal of Climate, 24, 509-521.
Zhan, R., Wang, Y., and Wu, C. C. , 2011: Impact of SSTA in the east Indian Ocean on the frequency of northwest Pacific tropical cyclones: A regional atmospheric model study. Journal of Climate, 24, 6227-6242.
Zhao, M., Held, I. M., Lin, S. J., and Vecchi, G. A. , 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. Journal of Climate, 22, 6653-6678.