簡易檢索 / 詳目顯示

研究生: 李孟哲
Ly, Meng-Che
論文名稱: 脂肪幹細胞分泌之微囊泡改善環磷醯胺誘導之過動膀胱症
Adipose stem cell-derived microvesicles ameliorate cyclophosphamide-induced bladder overactivity
指導教授: 鄭劍廷
Chien, Chiang-Ting
口試委員: 姜秉均
Chiang, Bing-Juin
鍾旭東
Chung, Shiu-Dong
鄭劍廷
Chien, Chiang-Ting
口試日期: 2021/12/21
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 58
中文關鍵詞: 環磷醯胺過動膀胱症脂肪幹細胞微囊泡毒蕈鹼受體嘌呤受體出血性膀胱炎
英文關鍵詞: cyclophosphamide, overactive bladder, adipose stem cells, microvesicles, muscarinic receptors, purinergic receptors, hemorrhagic cystitis
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200047
論文種類: 學術論文
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膀胱是人體中重要器官之一,主要功能包含暫存尿液及排除含代謝廢物的尿液。隨著年齡增加,高齡人口表現膀胱過動症的比例也隨之遞增,考慮到生活品質降低和社會醫療成本增加,過動膀胱症是一個不可忽視的醫療議題。膀胱過動症為一種泌尿系統疾病,常見症狀如頻尿、尿急、儲尿功能下降,致病原因有很多,如糖尿病、下尿道阻塞、細菌感染以及尿路上皮受損,病 理 上 可 觀 察 到 逼 尿 肌 過度敏感 、 慢 性 發 炎 等 現 象 。 環 磷 醯 胺(Cyclophosphamide, CYP) 作為一種化療藥物,常在組織移植過程作為免疫抑制劑使用,在體內經過代謝後產生丙烯醛 (Acrolein),經過腎臟濾出後順著尿液經過膀胱,將對膀胱造成損傷形成出血性膀胱炎,因此使用環磷醯胺作為誘導過動膀胱症的藥物。
    目前對於過動膀胱症的治療藥物多半伴隨不適的副作用,往往降低病患服藥意願,脂肪幹細胞為脂肪組織中具有自我修復與增殖的細胞群,許多研究注重脂肪幹細胞應用於活體中的作用以及培養脂肪幹細胞時分泌之微囊泡或胞外體應用於實驗研究中。因為自體細胞移植產生較少的免疫排斥、較高的組織相容性等。先前研究已各別使用脂肪幹細胞與脂肪幹細胞分泌之微囊泡治療膀胱缺血大鼠模式,能有效改善大鼠頻尿、缺血、發炎等。本研究欲探討脂肪幹細胞分泌之微囊泡應用於 CYP 誘導出血性膀胱炎中是否具抑制膀胱過度活化以及抗發炎效果。
    實驗結果顯示脂肪幹細胞分泌之微囊泡可下調減少第三型毒蕈鹼受體減少膀胱逼尿肌過度活化、減緩頻尿、過敏化的現象和以及下調減少 P2X7 受體表現量以及下游 Caspase 1、IL-1β等發炎路徑中相關分子的表現量,病理上觀察脂肪幹細胞所分泌之微囊泡可以降低免疫細胞浸潤現象、維持尿路上皮完整程度與抑制膀胱纖維化等結果。總結,脂肪幹細胞分泌之微囊泡可以改善CYP 引起之過動膀胱症。

    The urinary bladder plays an important role in human body. Its main functions
    include temporary storage of urine and emptying of urine rich in metabolic waste.
    With the increase of age, the proportion of elderly people with overactive bladder
    also increases. Considering the decline in the quality of life and the increase in social medical costs, overactive bladder is a medical issue that cannot be ignored.
    Overactive bladder is a urinary system disease, which can be caused by many
    reasons, such as diabetes, lower urethral obstruction, bacterial infection, and
    urothelial damage. Pathologically, over-sensitivity of the detrusor muscle, decreased capacity of the bladder, frequent urination, and chronic inflammation can be observed. As a chemotherapeutic drug, Cyclophosphamide (CYP) is often used as an immunosuppressant during tissue transplantation. Acrolein, a metabolite of CYP, was produced and filtered out through kidneys. Ultimately, acrolein reaches urinary bladder via urine, causes damage to the bladder and forms hemorrhagic cystitis. In the present study, I use cyclophosphamide as an agent to induce overactive bladder disease.
    Most of the medial treatments for overactive bladder are accompanied by
    uncomfortable side effects, which often reduce the patient’s willingness to take the drug. Adipose stem cells are a group of cells that have self-repair and proliferation in adipose tissue. Many studies have focused on the role and culture of adipose stem cells in vivo and in vitro. Microvesicles or exosome secreted by adipose stem cells are used in experimental research. Due to autologous cell transplantation produces less immune rejection and higher histocompatibility. Our laboratory has successfully used adipose stem cells and adipose stem cells derived microvesicles to treat the bladder ischemia induced overactive bladder in the rat model. These results displayed that microvesicless treatment effectively improved urinary frequency ischemia, and inflammation in rats. This research intends to investigate whether microvesicles secreted by adipose stem cells can attenuate bladder overactivity and exert anti-inflammatory effects in CYP-induced hemorrhagic cystitis.
    Our experimental results show that the microvesicles secreted by adipose stem
    cells downregulate the type 3 muscarinic receptor, reduce the overactivation of the
    bladder detrusor, slow down the phenomenon of frequent urination, and reduce
    expression of P2X7 receptors which involved downstream inflammatory pathways
    molecule such as Caspase 1, and IL-1β. The pathologic results found that the the
    reduction of immune cell infiltration, the preservation of the integrity in the
    urothelium, and the inhibition of CYP-induced fibrosis in the bladder were discovered by the treatment of adipose stem cells derived microvesicles. In
    summary, adipose stem cells derived microvesicles can ameliorate CYP-induced
    bladder overactivity.

    中文摘要 iii Abstract v Abbreviation vii 第一章 緒論 1 1-1. 膀胱正常生理功能與機制 2 1-2. 過動膀胱症 3 1-3. 治療過動膀胱症之用藥策略 3 1-4. 環磷醯胺誘導出血性膀胱炎 3 1-5. 膀胱發炎與P2X7受體之關聯 4 1-6. 脂肪幹細胞 5 1-7. 脂肪幹細胞分泌微囊泡 5 1-8. 研究重要性與目的 7 第二章 研究材料與方法 8 2-1. 脂肪幹細胞分泌之微囊泡分離 9 2-1. 動物實驗 9 2-1-1. 實驗動物分組 10 2-1-2. 動物實驗之步驟 10 2-2. 代謝籠生理參數測量 11 2-3. 膀胱動力學測量 11 2-4. 離體膀胱組織收縮力測定 12 2-5. 組織病理切片染色分析 12 2-5-1. 蘇木精-伊紅染色 ( Hematoxylin & Eosin stain, H&E stain ) 12 2-5-2. 免疫組織化學染色 ( Immunohistochemistry, IHC ) 13 2-5-3. 馬森三色染色 ( Masson’s trichrome stain ) 13 2-5-4. 普魯士藍染色 ( Prussian blue stain ) 13 2-6. 西方墨點法 ( Western Blot, WB ) 14 2-7. 檢測毒蕈鹼受體表現量、嘌呤受體表現量、發炎性細胞凋亡 15 2-8. 統計分析 15 第三章 實驗結果 16 3-1. 脂肪幹細胞分泌之微囊泡電子顯微鏡掃描成果 17 3-2. 代謝籠中測量之排尿模式示意圖 17 3-3. 排尿頻率、飲水量和攝食量之統計差異 17 3-4. 尿路動力學表現模式與排尿指標統計差異 17 3-5. 尿路動力學中單一依次排尿週期指標統計差異 18 3-6. 離體測量膀胱組織對Carbachol刺激收縮力道紀錄和統計差異 19 3-7. 膀胱組織切片染色觀察(H&E stain) 19 3-8. 膀胱組織切片染色觀察纖維化程度(Masson’s trichrome stain) 20 3-9. 膀胱組織切片染色觀察鐵離子散佈程度(Prussian blue stain) 20 3-10. 膀胱組織蛋白質表現量和統計差異 21 3-10-1. 西方墨點法評估第三型毒蕈鹼受體(M3)表現量 21 3-10-2. 西方墨點法評估嘌呤類受體受體(P2X7)表現量 21 3-10-3. 西方墨點法評估Caspase 1表現量 22 3-10-4. 西方墨點法評估IL-1β表現量 22 3-11. 各組別實驗大鼠膀胱組織免疫組織化學染色(Immunohistochemistry) 23 3-11-1. 免疫組織化學染色第三型毒蕈鹼受體(M3)表現量 23 3-11-2. 免疫組織化學染色嘌呤類受體受體(P2X7)表現量 23 3-11-3. 免疫組織化學染色Caspase 1表現量 23 3-11-4. 免疫組織化學染色IL-1β表現量 24 第四章 討論 25 第五章 結論 31 參考文獻 32 圖與表格 41

    1. Streng, T., A. Talo, and K.E. Andersson, Transmitters contributing to the voiding contraction in female rats. BJU Int, 2004. 94(6): p. 910-4.
    2. Merrill, L., et al., Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat Rev Urol, 2016. 13(4): p. 193-204.
    3. Wang, P., G.R. Luthin, and M.R. Ruggieri, Muscarinic acetylcholine receptor subtypes mediating urinary bladder contractility and coupling to GTP binding proteins. J Pharmacol Exp Ther, 1995. 273(2): p. 959-66.
    4. Abrams, P., et al., Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol, 2006. 148(5): p. 565-78.
    5. Sellers, D.J. and R. Chess-Williams, Muscarinic agonists and antagonists: effects on the urinary bladder. Handb Exp Pharmacol, 2012(208): p. 375-400.
    6. Giglio, D. and G. Tobin, Muscarinic receptor subtypes in the lower urinary tract. Pharmacology, 2009. 83(5): p. 259-69.
    7. Wu, K.C., et al., I-Tiao-Gung extract through its active component daidzin improves cyclophosphamide-induced bladder dysfunction in rat model. Neurourol Urodyn, 2018. 37(8): p. 2560-2570.
    8. Lee, W.C., et al., Ba-Wei-Die-Huang-Wan (Hachimi-jio-gan) can ameliorate ketamine-induced cystitis by modulating neuroreceptors, inflammatory mediators, and fibrogenesis in a rat model. Neurourol Urodyn, 2019. 38(8): p. 2159-2169.
    9. Sugino, Y., et al., Laser-capture microdissection for analysis of cell type-specific gene expression of muscarinic receptor subtypes in the rat bladder with cyclophosphamide-induced cystitis. Int Urol Nephrol, 2015. 47(4): p. 637-42.
    10. Abrams, P., et al., The standardisation of terminology in lower urinary tract function: report from the standardisation sub-committee of the International Continence Society. Urology, 2003. 61(1): p. 37-49.
    11. Chuang, Y.C., et al., Prevalence of overactive bladder in China, Taiwan and South Korea: Results from a cross-sectional, population-based study. Low Urin Tract Symptoms, 2019. 11(1): p. 48-55.
    12. Stewart, W.F., et al., Prevalence and burden of overactive bladder in the United States. World J Urol, 2003. 20(6): p. 327-36.
    13. Chen, L.C. and H.C. Kuo, Pathophysiology of refractory overactive bladder. Low Urin Tract Symptoms, 2019. 11(4): p. 177-181.
    14. Duong, V., et al., A systematic review of neurocognitive dysfunction with overactive bladder medications. Int Urogynecol J, 2021.
    15. Szymanski, J.K., et al., Neuromodulation - a therapeutic option for refractory overactive bladder. A recent literature review. Wideochir Inne Tech Maloinwazyjne, 2019. 14(4): p. 476-485.
    16. Zhang, Y., et al., Mechanism and Priority of Botulinum Neurotoxin A versus Sacral Neuromodulation for Refractory Overactive Bladder: A Review. Urol Int, 2021: p. 1-6.
    17. Williams, L., et al., Post-transplantation Cyclophosphamide: From HLA-Haploidentical to Matched-Related and Matched-Unrelated Donor Blood and Marrow Transplantation. Front Immunol, 2020. 11: p. 636.
    18. Levine, L.A. and J.P. Richie, Urological complications of cyclophosphamide. J Urol, 1989. 141(5): p. 1063-9.
    19. Chen, L., et al., Wuzhi capsule regulates chloroacetaldehyde pharmacokinetics behaviour and alleviates high‐dose cyclophosphamide‐induced nephrotoxicity and neurotoxicity in rats. Basic & clinical pharmacology & toxicology, 2019. 125(2): p. 142-151.
    20. Haldar, S., et al., Inflammation and pyroptosis mediate muscle expansion in an interleukin-1beta (IL-1beta)-dependent manner. J Biol Chem, 2015. 290(10): p. 6574-83.
    21. Yang, Y., et al., Suppression of adenosine A2a receptors alleviates bladder overactivity and hyperalgesia in cyclophosphamide-induced cystitis by inhibiting TRPV1. Biochem Pharmacol, 2021. 183: p. 114340.
    22. Dobrek, L., et al., The Effect of Acetylcysteine on Renal Function in Experimental Models of Cyclophosphamide-and Ifosfamide-Induced Cystitis. Curr Urol, 2020. 14(3): p. 150-162.
    23. Engin, S., et al., Double benefit of metformin treatment: improved bladder function in cyclophosphamide-induced cystitis and enhanced cytotoxicity in cancer cells. Naunyn Schmiedebergs Arch Pharmacol, 2021. 394(6): p. 1167-1175.
    24. Rezaei, S., et al., Protective effects of sinapic acid against cyclophosphamide-induced testicular toxicity via inhibiting oxidative stress, caspase-3 and NF-kB activity in BALB/c mice. Andrologia, 2021: p. e14196.
    25. Negoro, H., et al., Pannexin 1 channels play essential roles in urothelial mechanotransduction and intercellular signaling. PLoS One, 2014. 9(8): p. e106269.
    26. Goncalves, R.G., et al., The role of purinergic P2X7 receptors in the inflammation and fibrosis of unilateral ureteral obstruction in mice. Kidney Int, 2006. 70(9): p. 1599-606.
    27. Wan, P., et al., Extracellular ATP mediates inflammatory responses in colitis via P2 x 7 receptor signaling. Sci Rep, 2016. 6: p. 19108.
    28. Taidi, Z., et al., Purinergic P2X7 receptors as therapeutic targets in interstitial cystitis/bladder pain syndrome; key role of ATP signaling in inflammation. Bladder (San Franc), 2019. 6(1): p. e38.
    29. Sun, Y., et al., Augmented stretch activated adenosine triphosphate release from bladder uroepithelial cells in patients with interstitial cystitis. J Urol, 2001. 166(5): p. 1951-6.
    30. Smith, C.P., et al., Enhanced ATP release from rat bladder urothelium during chronic bladder inflammation: effect of botulinum toxin A. Neurochem Int, 2005. 47(4): p. 291-7.
    31. Aldenborg, F., M. Fall, and L. Enerback, Proliferation and transepithelial migration of mucosal mast cells in interstitial cystitis. Immunology, 1986. 58(3): p. 411-6.
    32. Al-Nbaheen, M., et al., Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev Rep, 2013. 9(1): p. 32-43.
    33. Zarei, F. and A. Abbaszadeh, Stem cell and skin rejuvenation. J Cosmet Laser Ther, 2018. 20(3): p. 193-197.
    34. Banyard, D.A., et al., Implications for human adipose-derived stem cells in plastic surgery. J Cell Mol Med, 2015. 19(1): p. 21-30.
    35. Freitag, J., et al., Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: a randomized controlled trial. Regen Med, 2019. 14(3): p. 213-230.
    36. Chang, D., et al., Application of mesenchymal stem cell sheet to treatment of ischemic heart disease. Stem Cell Res Ther, 2021. 12(1): p. 384.
    37. Zhang, H., et al., Adipose tissue-derived stem cells ameliorate diabetic bladder dysfunction in a type II diabetic rat model. Stem Cells Dev, 2012. 21(9): p. 1391-400.
    38. Chiang, B.J., et al., Adipose-Derived Stem Cells and Their Derived Microvesicles Ameliorate Detrusor Overactivity Secondary to Bilateral Partial Iliac Arterial Occlusion-Induced Bladder Ischemia. Int J Mol Sci, 2021. 22(13).
    39. Raposo, G. and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 2013. 200(4): p. 373-83.
    40. Mattick, J.S. and I.V. Makunin, Non-coding RNA. Hum Mol Genet, 2006. 15 Spec No 1: p. R17-29.
    41. Su, S., et al., Overexpression of the long noncoding RNA TUG1 protects against cold-induced injury of mouse livers by inhibiting apoptosis and inflammation. FEBS J, 2016. 283(7): p. 1261-74.
    42. Phinney, D.G. and M.F. Pittenger, Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells, 2017. 35(4): p. 851-858.
    43. Sibikova, M., J. Zivny, and J. Janota, Cell Membrane-Derived Microvesicles in Systemic Inflammatory Response. Folia Biol (Praha), 2018. 64(4): p. 113-124.
    44. Gatti, S., et al., Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant, 2011. 26(5): p. 1474-83.
    45. Tang, X.D., et al., Mesenchymal Stem Cell Microvesicles Attenuate Acute Lung Injury in Mice Partly Mediated by Ang-1 mRNA. Stem Cells, 2017. 35(7): p. 1849-1859.
    46. Ren, S., et al., Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways. Stem Cell Res Ther, 2019. 10(1): p. 47.
    47. Gonzalez-Felix, M.A., L.A. Mejia-Manzano, and J. Gonzalez-Valdez, Biological nanoparticles: Relevance as novel target drug delivery systems and leading chromatographic isolation approaches. Electrophoresis, 2021.
    48. Golubeva, A.V., et al., The mouse cyclophosphamide model of bladder pain syndrome: tissue characterization, immune profiling, and relationship to metabotropic glutamate receptors. Physiol Rep, 2014. 2(3): p. e00260.
    49. Tyagi, P., et al., Recent advances in imaging and understanding interstitial cystitis. F1000Res, 2018. 7.
    50. Chen, Y.T., et al., Melatonin treatment further improves adipose-derived mesenchymal stem cell therapy for acute interstitial cystitis in rat. J Pineal Res, 2014. 57(3): p. 248-61.
    51. Chen, G., et al., beta-Adrenoceptor regulates contraction and inflammatory cytokine expression of human bladder smooth muscle cells via autophagy under pathological hydrostatic pressure. Neurourol Urodyn, 2020. 39(8): p. 2128-2138.
    52. Liang, Z., et al., Hydrostatic pressure and muscarinic receptors are involved in the release of inflammatory cytokines in human bladder smooth muscle cells. Neurourol Urodyn, 2017. 36(5): p. 1261-1269.
    53. Chien, C.T., et al., Neural mechanisms of impaired micturition reflex in rats with acute partial bladder outlet obstruction. Neuroscience, 2000. 96(1): p. 221-30.
    54. de Groat, W.C. and N. Yoshimura, Afferent nerve regulation of bladder function in health and disease. Handb Exp Pharmacol, 2009(194): p. 91-138.
    55. Wu, K.C., et al., Glycine tomentella hayata extract and its ingredient daidzin ameliorate cyclophosphamide-induced hemorrhagic cystitis and oxidative stress through the action of antioxidation, anti-fibrosis, and anti-inflammation. Chin J Physiol, 2019. 62(5): p. 188-195.
    56. Huang, B., et al., Microvesicles (MIVs) secreted from adipose-derived stem cells (ADSCs) contain multiple microRNAs and promote the migration and invasion of endothelial cells. Genes Dis, 2020. 7(2): p. 225-234.
    57. Bruno, S., et al., Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol, 2009. 20(5): p. 1053-67.
    58. Martins, J.P., et al., The role of P2X7 purinergic receptors in inflammatory and nociceptive changes accompanying cyclophosphamide-induced haemorrhagic cystitis in mice. Br J Pharmacol, 2012. 165(1): p. 183-96.
    59. Li, J., et al., Ferroptosis: past, present and future. Cell Death Dis, 2020. 11(2): p. 88.
    60. Jiang, L., et al., Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 2015. 520(7545): p. 57-62.
    61. Tarangelo, A., et al., p53 Suppresses Metabolic Stress-Induced Ferroptosis in Cancer Cells. Cell Rep, 2018. 22(3): p. 569-575.

    無法下載圖示 電子全文延後公開
    2027/01/14
    QR CODE